HYPERCYCLIC OPERATORS ON FREE BANACH SPACES
Keywords:
hypercyclic operator, free Banach space.Abstract
We consider some condition of cyclicity and hypercyclicity of operators on free Banach space over a metric spaces.
References
1. Weaver N. Lipschitz Algebras / N. Weaver. – Singapore, New Jersey, London, Hong Kong: World Scientific, 1999. – 323 p.
2. Benyamini Y. Geometric Nonlinear Functional Analysis, I / Y.Beniamini, J.Lindenstrauss. – Providence, Rhode Island: AMS Colloquium Publications, 2000. – V.48.
3. Pestov V. Free Banach spaces and representation of topo- logical groups / V.Pestov // Functional Anal. Appl. – 1986. – V.20. – P. 70-72.
4. B`es J. Hereditarily hypercyclic operators / J.B ́es, A.Peris // J. Func. Anal. – 1999. – V.167, No1. – P. 94-112.
5. De La Rosa M. A hypercyclic operator whose direct sum is not hypercyclic / M. De La Rosa, C.J.Read // J. Operator Theory. – 2009. – V.62, No2. – P. 369-380.
6. Carando D. Hypercyclic convolution operators on Fr ́echet spaces of analytic functions / D.Carando, V.Dimant, S.Muro // J. Math. Anal. and Appl. – 2007. – 336, No2. – P. 1324-1340.
2. Benyamini Y. Geometric Nonlinear Functional Analysis, I / Y.Beniamini, J.Lindenstrauss. – Providence, Rhode Island: AMS Colloquium Publications, 2000. – V.48.
3. Pestov V. Free Banach spaces and representation of topo- logical groups / V.Pestov // Functional Anal. Appl. – 1986. – V.20. – P. 70-72.
4. B`es J. Hereditarily hypercyclic operators / J.B ́es, A.Peris // J. Func. Anal. – 1999. – V.167, No1. – P. 94-112.
5. De La Rosa M. A hypercyclic operator whose direct sum is not hypercyclic / M. De La Rosa, C.J.Read // J. Operator Theory. – 2009. – V.62, No2. – P. 369-380.
6. Carando D. Hypercyclic convolution operators on Fr ́echet spaces of analytic functions / D.Carando, V.Dimant, S.Muro // J. Math. Anal. and Appl. – 2007. – 336, No2. – P. 1324-1340.
Downloads
Published
2019-03-07
How to Cite
Загороднюк, А. В., Марцінків, М. В., & Можировська, З. Г. (2019). HYPERCYCLIC OPERATORS ON FREE BANACH SPACES. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (1(17), 76–80. Retrieved from https://pvntsh.nung.edu.ua/index.php/number/article/view/231
Issue
Section
Mathematics and Mechanics