THE CONVOLUTION OPERATION ON THE DUAL SPACE TO THE ALGEBRA C(P*(X))

Authors

  • Тарас Васильович Василишин Vasyl Stefanyk Precarpathian National University

Keywords:

∗ -polynomial, convolution of functionals, Fréchet algebra

Abstract

We define and prove the correctness of the convolution operation on the dual space to the Fréchet algebra C( P * ( X ) ) , which is the completion of the algebra of all continuous ∗ -polynomials on a complex Banach space X with respect to the metric, generated by the system of uniform norms on closed balls of the space X .

References

Mujica J. Complex Analysis in Banach Spaces / J. Mujica // North-Holland, Amsterdam, New York, Oxford. – 1986. – 447 p.

Vasylyshyn T.V. Polarization formula for ( p, q) -polynomials on a complex normed space / T.V. Vasylyshyn, A. V. Zagorodnyuk // Methods of Functional Analysis and Topology. – 2011. – V. 17, No 1. – P. 75-83.

Василишин Т.В. Поляризаційна формула та поляризаційна нерівність для ( p, q) -лінійних відображень. / Т.В. Василишин, А.В. Загороднюк //Карпат. мат. публ. – 2009. – Т. 1, No 2. – С. 128-144.

Published

2019-02-11

How to Cite

Василишин, Т. В. (2019). THE CONVOLUTION OPERATION ON THE DUAL SPACE TO THE ALGEBRA C(P*(X)). PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (2(38), 23–27. Retrieved from https://pvntsh.nung.edu.ua/index.php/number/article/view/31

Issue

Section

Mathematics and Mechanics