ON THE SPACES OF ( p, q) -LINEAR AND OF ( p, q ) - HOMOGENEOUS MAPPINGS BETWEEN COMPLEX LINEAR SPACES

Authors

  • Тарас Васильович Василишин Vasyl Stefanyk Precarpathian National University

Keywords:

( p , q) -linear mapping, ( p, q) -homogeneous mapping, pro- jector.

Abstract

We show that the space of ( p , q ) -linear mappings between complex linear spaces is a proper subspace of the space of ( p, q ) -homogeneous with respect to the collection of arguments and ( p + q ) -linear in the real sense mappings. Also we construct a projector from the space of ( p , q )homogeneous with respect to the collection of arguments and ( p + q) -linear in the real sense mappings onto the space of ( p, q ) -linear mappings.

References

Mujica J. Complex Analysis in Banach Spaces / J. Mujica // North-Holland, Amsterdam, New York, Oxford. – 1986. – 447 p.

Vasylyshyn T.V. Polarization formula for ( p, q ) -polynomials on a complex normed space / T.V. Vasylyshyn, A.V. Zagorodnyuk // Methods of Functional Analysis and Topology. – 2011. – V.17, No1. – P. 75-83.

Василишин Т.В. Поляризаційна формула та поляризаційна нерівність для ( p, q ) -лінійних відображень / Т.В. Василишин, А.В. Загороднюк // Карпат. мат. публ. – 2009. – Т.1, No2. – С. 128-144.

Published

2019-02-26

How to Cite

Василишин, Т. В. (2019). ON THE SPACES OF ( p, q) -LINEAR AND OF ( p, q ) - HOMOGENEOUS MAPPINGS BETWEEN COMPLEX LINEAR SPACES. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (1(29), 31–34. Retrieved from https://pvntsh.nung.edu.ua/index.php/number/article/view/137

Issue

Section

Mathematics and Mechanics