ON THE ABSENCE OF AN EXCEPTIONAL SET IN THE RELATION FROM WIMAN’S THEOREM

Authors

  • S.I. Dubei Ivan Franko National University of Lviv, Lviv, Ukraine
  • O.B. Skaskiv Ivan Franko National University of Lviv, Lviv, Ukraine
  • O.M. Trusevych Lviv State University of Life Safety

DOI:

https://doi.org/10.31471/2304-7399-2025-21(79)-28-34

Keywords:

analytic function, Wiman’s theorem, exceptional set, maximum modulus.

Abstract

Let $S(a,b),$\ $-\infty\le a<b\le +\infty,$\ be a class of functions analytic in $\Pi(a,b)=\{z: a<\text{\rm Re}\, z<b\}$ such that $$(\forall x\in(a,b))\colon\ M(x,F):=\sup\{|F(t+iy)|: a<t\le x, y\in{\mathbb R}\}<+\infty,$$ and $L(x,F)=(\ln M(x,F))'_+$ is the right derivative. By $S_{\infty}(a,b)$ we denote a subclass of the class $S(a,b)$, which consists of those functions $F\in S(a,b),$ such that $ L(x,F)\to +\infty \quad (x\to b-0)$, and by $S_0$ we denote the class of functions $F\in S_{\infty}(0, +\infty)$ for which there exists a function $\delta(r)\colon\mathbb{R}_{+}\to \mathbb{R}_{+}$ such that $\delta(r)\nearrow +\infty$ $(0\leq r\uparrow +\infty)$ and the inequality $$\big|L\big(r\pm \delta(r)/L(r,F),F\big)-L(r,F)\big|\leq L(r,F)/\delta(r) \quad (r\geq r_0) $$ is satisfied. Let  $$B_{F}(r)=\sup\{\hbox{Re~}F(z)\colon \hbox{Re~}z<r\},\quad A_{F}(r)=\inf\{\hbox{Re~}F(z)\colon \hbox{Re~}z<r\}. $$ The following theorem is proved: Let $F\in {S}_0$, then the asymptotic relations $$ M(r,F)=(1+o(1))B_{F}(r)=-(1+o(1))A_{F}(r), $$ hold as $r\to +\infty.$

References

1. Dubei S.I., Skaskiv O.B. Про основне спiввiдношення теорiї Вiмана-Валiрона i асимптотична h-щiльнiсть виняткових множин, Прикарпатський вiсник наукового товариства iменi Шевченка. Число, 2024, No 19(73), 18–23. https://pvntsh.nung.edu.ua/index.php/number/article/view/2003 DOI: https://doi.org/10.31471/2304-7399-2024-19(73)-18-23

2. Skaskiv O., Bandura A., Salo T., Dubei S. Entire functions of several variables: Analogs of Wiman’s theorem. Axioms. 2025, 14 (3), article ID 216. https://www.mdpi.com/2075-1680/14/3/216 DOI: https://doi.org/10.3390/axioms14030216

3. Strelitz Sh. I. Asymptotic properties of analytical solutions of differential equations. Vilnius: Mintis, 1972.

4. Salo T.M., Skaskiv O.B., Stasyuk Ya.Z. On a central exponent of entire Dirichlet series, Mat. Stud., 19 (2003), no. 1, 61–72.

5. Hayman, W.K. The local growth of power series: a survey of the Wiman–Valiron method. Canadian Mathematical Bulletin 1974, 17(3), 317–358. https://doi.org/10.4153/CMB-1974-064-0

6. Hayman, W.K. Subharmonic functions, Acad. Press: London, Great Britain, 1990; Volume 2. XXI+591 p. ISBN 978-012-334-802-9

7. Skaskiv, O.B. A generalization of the little Picard theorem. Journal of Mathematical Sciences 1990, 48, 570–578. https://doi.org/10.1007/BF01095627 Translated from Teoriya Funktsii, Funktsional’nyi Analiz i Ikh Prilozheniya, 1986, 46, 90–100.

8. Sheremeta, M.N. The Wiman-Valiron method for Dirichlet series. Ukrainian Mathematical Journal 1978, 30 (6), 376–383. https://doi.org/10.1007/BF01085861 Translated from Ukrains’kyi Matematychnyi Zhurnal 1978, 30 (6), 488–497.

Published

2025-12-09

How to Cite

Dubei, S., Skaskiv, O., & Trusevych, O. (2025). ON THE ABSENCE OF AN EXCEPTIONAL SET IN THE RELATION FROM WIMAN’S THEOREM. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (21(79), 28–34. https://doi.org/10.31471/2304-7399-2025-21(79)-28-34