STRUCTURE OF DEFECTIVE VECTORS FOR ASSOCIATED ENTIRE CURVES WITH LINEARLY DEPENDENT COMPONENTS

Authors

  • Ya.I. Savchuk Ivan Kozhedub National University of the Air Force
  • O. K. Fursenko Ivan Kozhedub National University of the Air Force
  • N. M. Chernovol Ivan Kozhedub National University of the Air Force

DOI:

https://doi.org/10.31471/2304-7399-2025-21(79)-59-65

Keywords:

: entire curve; entire curve with linearly dependent components; special vector; associated entire curve; Nevanlinna exceptional vector

Abstract

We study the structure of the set of exceptional vectors in the sense of Nevanlinna for associated entire curves of finite order with linearly dependent components. It is shown that even if an entire curve has linearly independent components, its associated entire curve may nevertheless have linearly dependent components. It is known that the set of all Nevanlinna exceptional vectors of a finite-order entire curve with linearly dependent components, together with a given subspace }$A_0=\left\{\overrightarrow{a}\in {\boldsymbol{C}}^p:\overrightarrow{G}\left(z\right)\cdot \overrightarrow{a}?0\right\}$\textit{, can be expressed as at most a countable union of subspaces  }$A_j$\textit{, satisfying }$\omega\le \mathrm{dim} A_j\le p-1$\textit{  and  }$A_j\supset A_0$\textit{. Furthermore, it is established that the corresponding associated entire curve }${\overrightarrow{G}}_l:\boldsymbol{C}\ \to {\boldsymbol{C}}^q$, where $q=C^l_p$, also has $\omega^*\ge C^l_p{-C}^l_{p-\omega}$\textit{ linearly dependent components. For this associated entire curve, the set of its Nevanlinna exceptional vectors, together with the subspace }${\mathrm{A}}^*_0=\left\{\overrightarrow{b}\in {\boldsymbol{C}}^q:\overrightarrow{G}\left(z\right)\cdot \overrightarrow{b}\equiv 0\right\}$\textit{, constitutes at most a countable union of subspaces }${\mathrm{A}}^*_j$\textit{  of dimension not exceeding }$\mathrm{q}\mathrm{-1}$\textit{, where }${{\mathrm{A}}^*_j\supset \mathrm{A}}^*_0$\textit{. In addition, for each }${\mathrm{A}}^*_j$\textit{, there exists a so-called special vector }${\overrightarrow{b}}_j\in {\boldsymbol{C}}^q$\textit{, orthogonal to }${\mathrm{A}}^*_j$.

References

1. Савчук Я.І. Структура множини неванліннівських дефектних векторів для цілих кривих з лінійно залежними компонентами. – Прик. Вісник НТШ, Число. – 2013 р., 1(21), с. 20 - 25.

2. Савчук Я.І. Ціла крива з лінійно залежними компонентами та наперед заданою множиною дефектних векторів. – Прик. Вісник НТШ, Число. – 2014 р., 12(5), с. 26-32.

3. Савчук Я.І. Структура дефектних векторів для приєднаних цілих кривих. – Прик. Вісник НТШ, Число. – 2010. – №1(9). – с. 46-50.

4. Weyl H., Weyl J. Meromorphic curves. – Annals of math., 1938, Vol. 39, p. 516 -538.

5. Савчук Я.І. Побудова приєднаної цілої кривої з наперед заданою множиною дефектних векторів. – Прик. Вісник НТШ, Число. – 2011 р., 1(13), с. 43-49.

Published

2025-12-09

How to Cite

Savchuk, Y., Fursenko, O. K., & Chernovol, N. M. (2025). STRUCTURE OF DEFECTIVE VECTORS FOR ASSOCIATED ENTIRE CURVES WITH LINEARLY DEPENDENT COMPONENTS. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (21(79), 59–65. https://doi.org/10.31471/2304-7399-2025-21(79)-59-65