THE LATTICE OF PARTIAL ULTRAPSEUDOMETRICS
DOI:
https://doi.org/10.31471/2304-7399-2024-19(73)-67-73Keywords:
lattice, ultrametric, pseudometric.Abstract
A partial order is introduced on the set of all ultrapseudometrics defined
in subsets of a fixed set. We propose operations of gluing and contraction for
ultrapseudometrics with distinct domains. These operations are used to prove
that the obtained poset is a lattice.
References
Bang Ye Wu, Kun-Mao Chao, Chuan Yi Tang. Approximation and exact algorithms for constructing minimum ultrametric trees from distance matrices // Journal of Combinatorial Optimization, 1999. – 3. – 199–211.
M. Farach, S. Kannant, T. Warnow. Robust model for finding optimal evolutionary trees: extended abstract // Algorithmica, 1995. – 13. – 155–179.
M.E. Mikhailov. Decompositions of finite pseudometric spaces // Mathematical Notes, 1998. – 63(2). – 225–234.
F. Murtagh. On ultrametricity, data coding, and computation // Journal of Classification, 2004. – 21. – 167-184.
F. Murtagh, P. Contreras. Algorithms for hierarchical clustering: an overview //Wiley Interdiscip Rev: DataMining Knowl Discov, 2012. – 2. – 86–97.
F. Murtagh, P. Contreras. Algorithms for hierarchical clustering: an overview II // WIREs Data Mining Knowl Discov, 2017. – 7. – e1219.
S.I. Nykorovych, O.R. Nykyforchyn, A.V. Zagorodnyuk, Approximation relations on the posets of pseudoultrametrics // Axioms, 2023. – 12(5). – 438.
R. Rammal, J. C. Angles d’Auriac, B. Doucot. On the degree of ultrametricity // J. Physique Lett., 1985. – 46. – L-945–L-952.
M. Di Summa, D. Pritchard, L. Sanit´a. Finding the closest ultrametric // Disc. Appl. Math., 2015. – 180. – 70–80.