DIRICHLET PROBLEM FOR DIFFERENTIAL EQUATIONS OF EVEN ORDER OPERATOR COEFFICIENTS THAT CONTAIN AN INVOLUTION

Authors

  • Y. O. Baranetskij National University "Lviv Polytechnic"

DOI:

https://doi.org/10.31471/2304-7399-2018-2(46)-26-37

Keywords:

differential-operator equations, eigenvalue, Riesz base, involution operator, transformation operator.

Abstract

We study a problem with Dirichlet conditions for a differential equation of order 2n, whose coefficients are non-self-adjoint operators. It is established that the task operator has two subspaces generated by the involution operator, and two subsystems of the system of eigenfunctions, which are Riesz bases in each of the subspaces. Eigenvalues and eigenfunctions are defined. Sufficient conditions are obtained under which the system of eigenfunctions is the Rees base. The conditions for the existence of unity of the solution of the problem with homogeneous boundary conditions, constructed only as a series on the system of eigenfunctions, are established.

References

Ashyralyev A., Sarsenbi A.M. Well – posedness of an elliptic equations with an involution. E J D E. – 2015. – 284. – P. 1–8.

Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I., Kopach M.I. The nonlocal multipoint problem for an ordinary differential equations of even order with the involution // Mathematchni Studii. Vol. – 2018. – 49, No1. – P. 80–94.

Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I., Kopach M.I. The nonlocal problem for the differential-operator equation of the even order with the involution // Carpathian Math. Publ. – 2017. – 9, No. 2. – P. 109–119. Doi: 10.15330/cmp.9.2.109-119.

Baranetskij Ya.O., Demkiv I.I., Ivasiuk I.Ya., Kopach M.I. The nonlocal problem for the differential equations the order 2n with an unbounded operator coefficients with the involution // Carpathian Math. Publ. – 2018. – 10, No.1. – P. 14–30. doi: 10.15330/cmp.10.1.14-30.

Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I., Kopach M.I. The nonlocal multipoint problem for an ordinary differential equations of even order with the involution // Mathematchni Studii. Vol. – 2018. – 49, No1. – P.80–94.

Burlutskaya M.Sh., Khromov A.P. Initial–boundary value problems for first-order hyperbolic equations with involution. Dokl. Math. – 2011. – 84, No3. – P. 783–786. doi:10.1134/S1064562411070088.

Cabada A., Tojo F.A.F. Existence results for a linear equation with reflection, non-constant coefficient and periodic boundary conditions. J. Math. Anal. Appl. – 2014. – 412, No1. – P. 529–546. doi:10.1016/j.jmaa.2013.10.067

Gokhberg I.Ts., Krein M.G. Introduction to the Theory of Linear Not Self Adjoint Operators.Nauka, Moscow – 1965. (in Russian).

Gupta C.P. Two-point boundary value problems involving reflection of the argument// Int. J. Math. Math. Sci. – 1987. – 10, No2,. – P. 361–371. doi:10.1155/S0161171287000425.

Kirane M., Al-Salti N. Inverse problems for a nonlocal wave equation with an involution perturbation //J. Nonlinear Sci. Appl. – 2016. – 9. – P. 1243–1251.

Kritskov L.V., Sarsenbi A.M. Spectral properties of a nonlocal problem for the differential equation with involution // Differ. Equ. – 2015. – 51, No8. P. – 984–990. doi:10.1134/S0012266115080029.

Kurdyumov V.P. On Riescz bases of eigenfunction of 2-nd order differential operator with involutionand integral boundary conditions // Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform. – 2015, 15, No4. – P. 392–405. doi:10.18500/1816-9791-2015-15-4-392-405 (in Russian).

Moiseev E.I., Ambartsumyan V.E. On the Basis Property of the Eigenfunctions of the Frankl Problemwith Nonlocal Evenness and Oddness Conditions of the Second Kind // Dokl. Math. – 2010, 432, No4. – P. 451– 455. doi: 10.1134/S1064562410030257 (in Russian).

O’Regan D. Existence results for differential equations with reflection of the argument // J. Aust. Math. Soc. – 1994 . – 57, No 2. – P. 237–260. doi:10.1017/S1446788700037538.

Sadybekov M.A., Sarsenbi A.M. Mixed problem for a differential equation with involution under boundary conditions of general form // AIP Conf. Proc. – 2012. – 1470. doi:10.1063/1.4747681

Sadybekov M.A., Turmetov B.K. On analogues of periodic boundary value problems for the Laplace operator in a ball // Eurasian Math J. – 2012. – 3, No1. – P. 143–146.

Published

2018-12-14

How to Cite

Baranetskij, Y. O. (2018). DIRICHLET PROBLEM FOR DIFFERENTIAL EQUATIONS OF EVEN ORDER OPERATOR COEFFICIENTS THAT CONTAIN AN INVOLUTION. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (2(46), 26–37. https://doi.org/10.31471/2304-7399-2018-2(46)-26-37