SOME PROPERTIES OF ELEMENTARY SYMMETRIC POLYNOMIALS ON THE CARTESIAN SQUARE OF THE COMPLEX BANACH SPACE L∞ [ 0,1 ]
DOI:
https://doi.org/10.31471/2304-7399-2018-2(46)-9-16Keywords:
symmetric polynomial, the space of Lebesgue measurable essentially bounded functions.Abstract
We construct the element of the Cartesian square of the complex Banach space L ∞ [ 0,1 ] of all Lebesgue measurable essentially bounded functions on [ 0,1 ] by the predefined values of elementary symmetric polynomials on this element. Results of this work can be applied to the investigation of an algebraic basis of the algebra of continuous symmetric polynomials on the Cartesian square of the complex Banach space L ∞ [ 0,1 ] .
References
Albiac F. Topics in Banach space theory. / F. Albiac, N. Kalton // Graduate Texts in Mathematics, Springer, vol. 233 – 2006.
Galindo P. The algebra of symmetric analytic functions on L∞ . / P. Galindo, T. Vasylyshyn, A. Zagorodnyuk // Proc. Roy. Soc. Edinb. Sect. A. – 2017. – V. 147, No 4. – p. 743-761.
Kahane J.P. Some random series of functions. / J.P. Kahane // Cambridge University Press, 2nd edition – 1985.
Немировский А.С. О полиномиальной аппроксимации функций на гильбертовом пространстве. / А.С. Немировский, С.М. Семенов // Матем. сб. – 1973. – Т. 92, No 2. – с. 257-281.