SOME PROPERTIES OF ELEMENTARY SYMMETRIC POLYNOMIALS ON THE CARTESIAN SQUARE OF THE COMPLEX BANACH SPACE L∞ [ 0,1 ]

Authors

  • T. V. Vasylyshyn Vasyl Stefanyk Precarpathian National University

DOI:

https://doi.org/10.31471/2304-7399-2018-2(46)-9-16

Keywords:

symmetric polynomial, the space of Lebesgue measurable essentially bounded functions.

Abstract

We construct the element of the Cartesian square of the complex Banach space L ∞ [ 0,1 ] of all Lebesgue measurable essentially bounded functions on [ 0,1 ] by the predefined values of elementary symmetric polynomials on this element. Results of this work can be applied to the investigation of an algebraic basis of the algebra of continuous symmetric polynomials on the Cartesian square of the complex Banach space L ∞ [ 0,1 ] .

References

Albiac F. Topics in Banach space theory. / F. Albiac, N. Kalton // Graduate Texts in Mathematics, Springer, vol. 233 – 2006.

Galindo P. The algebra of symmetric analytic functions on L∞ . / P. Galindo, T. Vasylyshyn, A. Zagorodnyuk // Proc. Roy. Soc. Edinb. Sect. A. – 2017. – V. 147, No 4. – p. 743-761.

Kahane J.P. Some random series of functions. / J.P. Kahane // Cambridge University Press, 2nd edition – 1985.

Немировский А.С. О полиномиальной аппроксимации функций на гильбертовом пространстве. / А.С. Немировский, С.М. Семенов // Матем. сб. – 1973. – Т. 92, No 2. – с. 257-281.

Published

2018-12-14

How to Cite

Vasylyshyn, T. V. . (2018). SOME PROPERTIES OF ELEMENTARY SYMMETRIC POLYNOMIALS ON THE CARTESIAN SQUARE OF THE COMPLEX BANACH SPACE L∞ [ 0,1 ]. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (2(46), 9–16. https://doi.org/10.31471/2304-7399-2018-2(46)-9-16