To the theorem on differentiation of inequalities between convex functions
DOI:
https://doi.org/10.31471/2304-7399-2025-21(79)-11-18Keywords:
convex function, exceptional set, differentiation of inequalityAbstract
The following statement is proved in the article: For any constant $K > 1$, there exist upper unbounded convex functions $f$ and $g$ on $[0;+\infty)$ such that the inequality $f(x) \le g(x)$ holds for all $x \ge 0$, and for the set $$ E_1=\{ x \ge 0\,:\, f_{+}^{'}(x)\le K g_{+}^{'}(x) \} $$ holds $$ dE_{1} =\varliminf\limits_{R\to +\infty}\frac1{R}\text{\rm meas }(E_1\cap[0,R])=\frac {K-1}{K}, $$ where $f_{+}^{'}$ and $g_{+}^{'}$ are the right-hand derivatives of the functions $f$ and $g$, respectively.References
1. W.K. Hayman, J.F. Rossi, Characteristic, maximum modulus and value distribution, Trans. Amer. Math. Soc. 284 (1984), 651–664.
2. W.K. Hayman, F.M. Stewart, Real inequalities with applications to function theory, Proc. Cambridge Philos. Soc. 50 (1954), 250–260.
3. W. Bergweiler, An inequality for real functions with applications to function theory, Bull. London Math. Soc. 21 (1989), 171–175.
4. Скаскiв О.Б. Диференцiювання нерiвностi мiж дiйсними опуклими функцiями, Мат. Студiї, 19 (2003), No2, С.141–148.
Downloads
Published
2025-12-09
How to Cite
Bandura, A. I., & Mokhnal, A. I. (2025). To the theorem on differentiation of inequalities between convex functions. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (21(79), 11–18. https://doi.org/10.31471/2304-7399-2025-21(79)-11-18
Issue
Section
Mathematics and Mechanics