To the theorem on differentiation of inequalities between convex functions

Authors

DOI:

https://doi.org/10.31471/2304-7399-2025-21(79)-11-18

Keywords:

convex function, exceptional set, differentiation of inequality

Abstract

The following statement is proved in the article: For any constant $K > 1$, there exist upper unbounded convex functions $f$ and $g$ on $[0;+\infty)$ such that the inequality $f(x) \le g(x)$ holds for all $x \ge 0$, and for the set $$ E_1=\{ x \ge 0\,:\, f_{+}^{'}(x)\le K g_{+}^{'}(x) \} $$ holds $$ dE_{1} =\varliminf\limits_{R\to +\infty}\frac1{R}\text{\rm meas }(E_1\cap[0,R])=\frac {K-1}{K}, $$ where $f_{+}^{'}$ and $g_{+}^{'}$ are the right-hand derivatives of the functions $f$ and $g$, respectively.

References

1. W.K. Hayman, J.F. Rossi, Characteristic, maximum modulus and value distribution, Trans. Amer. Math. Soc. 284 (1984), 651–664.

2. W.K. Hayman, F.M. Stewart, Real inequalities with applications to function theory, Proc. Cambridge Philos. Soc. 50 (1954), 250–260.

3. W. Bergweiler, An inequality for real functions with applications to function theory, Bull. London Math. Soc. 21 (1989), 171–175.

4. Скаскiв О.Б. Диференцiювання нерiвностi мiж дiйсними опуклими функцiями, Мат. Студiї, 19 (2003), No2, С.141–148.

Published

2025-12-09

How to Cite

Bandura, A. I., & Mokhnal, A. I. (2025). To the theorem on differentiation of inequalities between convex functions. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (21(79), 11–18. https://doi.org/10.31471/2304-7399-2025-21(79)-11-18