IDENTIFICATION OF FUNCTIONS IN HARDY SPACE ON A HALF-STRIP DOMAIN
DOI:
https://doi.org/10.31471/2304-7399-2025-21(79)-35-40Keywords:
Hardy space, identification of signals, convolution equation.Abstract
This paper explores a signal identification problem using a convolution. We identify the signal with some function belonging to the Hardy space in a domain outside the half-strip. For this, we use a test function belonging to the Hardy space in the half-strip. Signals generated by point singularities and singularities generated by a segment are considered. The exponential test functions are chosen. For some cases, the exact solutions are found, for others, a convolution is found, and the possibility of finding the desired signal is analyzed.
References
1. Nikolski N.V. Operators, Functions, and Systems: An Easy Reading. - New York: Nikolski N., 2002. ISBN 0-8218-1083-9
2. Dilnyi V., Huk Kh. Identification of Unknown Filter in a Half-Strip // Acta Applicandae Mathematicae. — 2020. — Vol. 165, — P. 199—205. doi:10.1007/s10440-019-00250-8
3. Dilnyi V. On cyclic functions in weighted Hardy spaces // J. Math. Phys. Anal. Geom. — 2011. — Vol. 7, № 1. — P. 19–33.
4. Vinnitskii B. On zeros of functions analytic in a half plane and completeness of systems of exponents // Ukr.Math J. — 1994. — Vol. 46,— P. 514–532. — doi:10.1007/BF01058515
5. Queffelec H., Queffelec M. A Review of Commutative Harmonic Аnalysis in Diophantine Approximation and Dirichlet Series - Singapore: Springer, Queffelec H., 2021. - 287 p. ISBN 978-981-15-9669-8