STUDY OF THE ACCURACY OF EQUATIONS OF STATE FOR PREDICTING THE PARAMETERS OF LEAKAGE OF HYDROGEN GAS MIXTURES UNDER THE CONDITIONS OF GAS DISTRIBUTION NETWORKS

Authors

  • S. Y. Hryhorskyi Ivano-Frankivsk National Technical University of Oil and Gas
  • N. V. Kopachuk Ivano-Frankivsk National Technical University of Oil and Gas

DOI:

https://doi.org/10.31471/2304-7399-2025-21(79)-302-323

Keywords:

hydrogen-gasmixture; equationofstate; compressibilityfactor; adiabatindex; speedofsound; thermodynamicmodeling; gasleakage.

Abstract

In order to create a scientifically sound basis for improving the methods of calculating the parameters of the leakage of gas-hydrogen mixtures, a quantitative assessment of the accuracy of the common cubic equations of state was carried out. The adequacy of the Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) models for determining the physical properties of mixtures under conditions corresponding to the operation of gas distribution networks was investigated. Multivariate thermodynamic modeling of the compressibility factor, adiabatic index and sound speed was carried out in the PVTsim Nova software package. The study was performed for ten different component compositions of natural gas, taking into account the variability of its composition, with a molar concentration of hydrogen from 0 to 20%. Calculations were carried out in the range of absolute pressures from 0.1 to 1.3 MPa and temperatures from 243.15 K to 323.15 K. The obtained data were compared with the reference results calculated using the fundamental equation of state GERG-2008. It was found that both cubic equations of state provide high accuracy for the studied conditions. It was determined that the average relative error for the SRK equation is: for the compressibility factor – 0.23%, for the adiabatic index – 2.31%, for the speed of sound – 1.11%. For the PR equation, the corresponding errors are 1.04%, 1.61% and 0.76%. The key patterns of the influence of pressure, temperature and hydrogen content on the studied properties are identified and quantitatively described. In particular, it was established with a high degree of approximation reliability that the dependence of the speed of sound on the relative density of the mixture under fixed thermobaric conditions is linear. The results of the study confirm that the common cubic equations of state are a reliable and adequate theoretical basis for the development of new methods for calculating production and technological gas costs.

References

1. Islam A., Alam T., Sheibley N., Edmonson K., Burns D., Hernandez M. Hydrogen blending in natural gas pipelines: A comprehensive review of material compatibility and safety considerations. International Journal of Hydrogen Energy. 2024. Vol. 73. P. 706–731. DOI: 10.1016/j.ijhydene.2024.10.384.

2. Костогриз К., Височанський І., Колесник С. Перші випробування українських газових мереж на водні. Нафтогазова галузь України. Київ, 2020. № 5 (47). С. 24–28.

3. Impact of hydrogen injection on thermophysical properties and measure-ment reliability in natural gas networks / M. Cecchinietal. E3S Web of Con-ferences. 2021. Vol. 312. P. 01004. DOI: 10.1051/e3sconf/202131201004.

4. Lu H., Guo B., Chen X., Yao J., Liu B. Numerical investigation on lea-kage and diffusion characteristics of buried hydrogen-blended natural gas pipelines. International Journal of Hydrogen Energy. 2024. Vol. 59. P. 1491–1506. DOI: 10.1016/j.ijhydene.2024.02.075.

5. Hassanpouryouzband A., Joonaki E., Edlmann K., Heinemann N., Yang J. Thermodynamic and transport properties of hydrogen containing streams. Scientific Data. 2020. Vol. 7. Art. no. 247. DOI: 10.1038/s41597-020-0568-6.

6. Kunik W. G. The GERG-2008 Wide-Range Equationof State for Natural Gasesand Other Mixtures. GERG Technical Monograph 15. 2009. 156 p.

7. Казда С., Уніговський Л. Наукове супроводження експериментів транспортування сумішей водню та природного газу розподільними газопроводами. Нафтогазова галузь України. Київ, 2020. № 5 (47). С. 9–14.

8. Карпаш М. О., Олійник А. П., Райтер П. М., Яворський А. В., Уніговський Л. М. Дослідження герметичності газорозподільних мереж при транспортуванні водню. Нафтогазова галузь України. 2020. № 6. С. 24–28.

9. Anghel D. V., Stefanescu I. A review of natural gas-hydrogen blending in pipeline supply and distribution. Romanian Journal of Petroleum & Gas Technology. 2023. Vol. 75, no. 1. P. 149–158. DOI: 10.51865/JPGT.2023.01.13.

10. Ouyang X., Zhao D., Wang J., Zhou J., Zhang Z. Study on the Physical Properties of Hydrogen-Doped Natural Gas Based on Equation of State. Journal of Physics: Conference Series. 2024. Vol. 2731. Art. no. 012039. DOI: 10.1088/1742-6596/2731/1/012039.

11. Wang Z., Sun J., Liu Z., Wang J. Numerical Research on Leakage Char-acteristics of Pure Hydrogen/Hydrogen-Blended Natural Gas in Medium- and Low-Pressure Buried Pipelines. Energies. 2024. Vol. 17, Iss. 12. P. 2951. DOI: 10.3390/en17122951.

12. Experimental (ρ,P,T) data of H2 + CH4 mixtures at temperatures from 278 to 398 K and pressures up to 56 MPa/ A. Al-Malahetal. International Journal of Hydrogen Energy. 2024. Vol. 65. P. 719–731. DOI: 10.1016/j.ijhydene.2024.04.220.

13. Lu H., Guo B., Chen X., Yao J., Liu B. Numerical investigation on leakage and diffusion characteristics of buried hydrogen-blended natural gas pipelines. International Journal of Hydrogen Energy. 2024. Vol. 63. P. 827–839. DOI: 10.1016/j.ijhydene.2024.02.075.

14. Zhu J., Pan J., Zhang Y., Li Y., Li H., Feng H., Chen D., Kou Y., Yang R. Leakage and diffusion behaviour of a buried pipeline of hydrogen-blended natural gas. International Journal of Hydrogen Energy. 2023. Vol. 48, no. 1. P. 317–330. DOI: 10.1016/j.ijhydene.2022.10.185.

15. Zhang Y., Zhang J., Han X., Sun G., Liu S., Liu K. Research on the flow characteristics of injecting hydrogen into natural gas pipelines and its impact on energy metering. International Journal of Hydrogen Energy. 2024. Vol. 82. P. 150–161. DOI: 10.1016/j.ijhydene.2024.07.419.

16. Gislon P., Cerone N., Cigolotti V., Guzzini A., Pellegrini M., Saccani C., Robino M., Carrubba T., Cigni A., Enescu D., Fernicola V., Dudek A., Gajec M., Kułaga P., Maury R., Ben Rayana F. Hydrogen blending effect on fiscal and metrological instrumentation: A review. International Journal of Hydrogen Energy. 2024. Vol. 64. P. 597–626. DOI: 10.1016/j.ijhydene.2024.02.227.

17. PVTsim Nova Methods Documentation. Version 3.0:technical docu-mentation / Calsep. 2025. 338 p.

18. ДСТУ EN ISO 20765-2:2022 (EN ISO 20765-2:2018, IDT; ISO 20765-2:2015, IDT). Природний газ. Обчислювання термодинамічних властивостей. Частина 2. Однофазні властивості (газ, рідина та щільний плин) для розширених діапазонів застосування. [Чинний від 2023-12-28]. Київ: ДП «УкрНДНЦ», 2022. 124 с.

19. Kunz O., Wagner W. GERG-2008: A New Equation of State for Natural Gas and Other Mixtures. Journal of Chemical & Engineering Data. 2012. Vol. 57, no. 11. P. 3032–3091. DOI: 10.1021/je300655b.

20. Calsep: official web-site. URL: https://www.calsep.com (дата звернення: 23.08.2025).

21. Кодекс газотранспортної системи: затв. постановою Національної комісії, що здійснює державне регулювання у сферах енергетики та комунальних послуг, від 30.09.2015 № 2493 (у редакції постанови НКРЕКП від 18.10.2024 № 1928). URL: https://zakon.rada.gov.ua/laws/show/z1378-15

22. Кодекс газорозподільних систем: затв. постановою Національної комісії, що здійснює державне регулювання у сферах енергетики та комунальних послуг, від 30.09.2015 № 2494 (у редакції постанови НКРЕКП від 06.09.2024 № 1668). URL: https://zakon.rada.gov.ua/laws/show/z1379-15

Published

2025-12-09

How to Cite

Hryhorskyi, S. Y., & Kopachuk, N. V. (2025). STUDY OF THE ACCURACY OF EQUATIONS OF STATE FOR PREDICTING THE PARAMETERS OF LEAKAGE OF HYDROGEN GAS MIXTURES UNDER THE CONDITIONS OF GAS DISTRIBUTION NETWORKS. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (21(79), 302–323. https://doi.org/10.31471/2304-7399-2025-21(79)-302-323