MATHEMATICAL MODELLING OF THE PHYSICAL PROPERTIES OF ENERGY CARRIERS IN THE BIOGAS PRODUCTION SYSTEM

Authors

  • Vasyl Zapukhliak Ivano-Frankivsk National Technical University of Oil and Gas
  • Viktor Voznyy Ivano-Frankivsk National Technical University of Oil and Gas
  • Stanislav Hryhorskyi Ivano-Frankivsk National Technical University of Oil and Gas

DOI:

https://doi.org/10.31471/2304-7399-2025-20(76)-187-207

Keywords:

energy carrier; biogas; grain distiller's grains; pipeline transport; mathematical modelling; density; dynamic viscosity; heat capacity; thermal conductivity; coefficient of thermal expansion

Abstract

The article discusses the topical issue of mathematical modelling of the physical properties of energy carriers in grain distiller's grains biogas production systems. The efficiency of biogas technologies largely depends on the accurate design and operation of systems for transporting raw materials and the biogas produced. The main objective of the work is to develop mathematical models of the key physical properties (density, dynamic viscosity, coefficient of volume expansion, specific isobaric heat capacity and thermal conductivity coefficient) of grain distiller's grains, industrial effluents and biogas. For grain distiller's grains, the models are developed based on laboratory studies and take into account the dependence of properties on temperature and mass concentration of dry substances. For industrial wastewater, a 4% caustic soda solution is taken as the base liquid. Modelling of biogas properties is based on its component composition. The developed models are the basis for performing thermohydraulic calculations, optimising the design and operation of pipeline systems in biogas plants, which contributes to increasing their reliability, safety and economic feasibility.

References

1. How Does Anaerobic Digestion Work? // US EPA. – URL: https://www.epa.gov/agstar/how-does-anaerobic-digestion-work.

2. Anaerobic Digestion // California Energy Commission. – URL: https://www.energy.ca.gov/data-reports/california-power-generation-and-power-sources/bioenergy/anaerobic-digestion.

3. Digestate Factsheet: Page 1. The products of anaerobic digestion // European Biogas Association. – URL: https://europeanbiogas.eu/wp-content/uploads/2015/07/Digestate-paper-final-08072015.pdf.

4. Anaerobic Digestion: Diverse Benefits for Energy, Agriculture, Environment and Water // IEA Bioenergy. – 2018. – URL: https://www.ieabioenergy.com/wp-content/uploads/2018/08/anaerobic-digestion_web_END.pdf

5. The rheological properties of concentrated distillery spent wash / S. S. Sabale, S. S. Mehetre, G. D. Yadav, P. S. Patil // ResearchGate. – URL: https://scispace.com/pdf/rheological-properties-of-concentrated-distillery-spent-wash-34ulv38ove.pdf

6. Dubrovskis, V., Plume, I., Adamovics, A. Use of ethanol production and stillage processing residues for biogas production // Agronomy Research. – 2020. – Vol. 18, № 3. – P. 1042–1053.

7. Physical and chemical characteristics of distillery stillage // ResearchGate. – URL: https://www.researchgate.net/figure/Physical-and-chemical-characteristics-of-distillery-stillage_tbl2_342262586.

8. Wagner W., Pruß A. 2002. “The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use”. Journal of Physical and Chemical Reference Data 31 (2): 387–535. https://doi.org/10.1063/1.1461829.

9. ASTM D1250-19, “Standard Guide for the Use of the Joint API and ASTM Adjunct for Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils: API MPMS Chapter 11.1,” ASTM International, West Conshohocken, PA, 2019.

10. Lu Y, Rosentrater KA. Physical and chemical properties of whole stillage, thin stillage and syrup [Paper Number: 152184612, New Orleans, Louisiana, July 26-29]. Am Soc Agric Biol Eng (ASABE)2015. [Paper Num-ber: 152184612, New Orleans, Louisiana, July 26-29]. http://lib.dr.iastate.edu/abe_eng_conf.

11. National Research Council. International Critical Tables of Numerical Data, Physics, Chemistry and Technology. Volume III. Reprint ed. [S.l.] : Nabu Press, 2012. 444 p.

12. ДСТУ EN 16723-1:2023 (EN 16723-1:2016, IDT) Природний газ і біометан для використання в транспорті та біометан для закачування в мережу природного газу. Частина 1. Технічні характеристики біометану для закачування в мережу природного газу. Наказ від 03.04.2023 № 55 ; чинний з 2023-11-01. Вид. офіц. Київ : ДП «УкрНДНЦ», 2023. 26 с.

13. Biogas: Converting Waste to Energy. EESI. URL: https://www.eesi.org/papers/view/fact-sheet-biogasconverting-waste-to-energy.

14. Biogas Gasification / Biogas Gasifier. Gazpack. URL: https://gazpack.nl/en/biogas-gasification

15. Van der Grinten, J. (2020). Evaluation of a modified Herning - Zipperer method and the method by Schley et al. to compute the dynamic viscosity of natural gases. Physikalisch-Technische Bundesanstalt. https://doi.org/10.7795/120.20200724

16. ISO 20765-1. Natural gas ‒ Calculation of thermodynamic properties: Part 1: Gas phase properties for transmission and distribution applications. ISO Copyright Office: Geneva, 2005.

17. ДБН В.2.5-20:2018 Газопостачання; затв. наказом Міністерства регіонального розвитку, будівництва та житлово-комунального госпо-дарства України від 15.11.2018 р. № 305 ; чинний з 2019-07-01. Вид. офіц. Київ : Мінрегіон України, 2018. 113 с.

18. White F. M. Fluid mechanics. 7th ed. New York : McGraw-Hill, 2011. 885 p. (McGraw-Hill series in mechanical engineering).

Published

2025-07-02

How to Cite

Zapukhliak, V., Voznyy, V., & Hryhorskyi, S. (2025). MATHEMATICAL MODELLING OF THE PHYSICAL PROPERTIES OF ENERGY CARRIERS IN THE BIOGAS PRODUCTION SYSTEM. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (20(76), 187–207. https://doi.org/10.31471/2304-7399-2025-20(76)-187-207