IMPULSE BOUNDARY VALUE PROBLEM

Authors

  • Liubov Shehda Ivano-Frankivsk National Tecnical University of OIl and Gas

DOI:

https://doi.org/10.31471/2304-7399-2025-20(76)-59-64

Keywords:

canonical form, degenerate Noetherian momentum problem, pseudoinverse matrice, orthoprojector.

Abstract

The article considers a degenerate impulse boundary value problem for
systems of ordinary differential equations with a matrix degenerate on the entire
segment where the problem is considered, with respect to the derivative, for the
case when the number of unknowns does not coincide with the number of boundary
conditions. A criterion for the existence of solutions to a degenerate impulse
boundary value problem is obtained, assuming that the degenerate differential
system reduces to the central canonical form. For the problem under consideration,
the conditions for the existence of solutions to a degenerate impulse boundary
value problem are reduced to the solution of the algebraic system.

References

1. Boichuk A., Langerova M., Ruzickova M., Voitushenko E. Systems of singular differential equations with pulse action // Adv. Difference Equat. – 2013. – 186 p.

2. Zettl A. Adjoint and self-adjoint boundary value problems with interface conditions // SIAM J. Appl. Math. – 1968. – 16, №4. – P.851-859.

3. Boichuk A. A., Samoilenko A. M. Generalized inverse operators and Fredholm boundary-value problems (2nd ed.). – Berlin/Boston: Walter de Gruyter GmbH, 2016. – 314 p.

4. Самойленко А.М., Шкіль М.І., Яковець В.П. Лінійні системи диференціальних рівнянь з виродженнями. – Київ: Вища школа, 2000 – 294 с.

5. Бойчук О.А., Войтушенко Є.С., Шегда Л.М. Нетерова імпульсна задача з керуванням // Нелінійні коливання. – 2016. − Т. 19, № 3. − С. 362 − 366.

Published

2025-07-02

How to Cite

Shehda, L. (2025). IMPULSE BOUNDARY VALUE PROBLEM. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (20(76), 59–64. https://doi.org/10.31471/2304-7399-2025-20(76)-59-64