IMPROVEMENT OF METHODS AND TOOLS FOR MONITORING THE CONDITION OF OIL AND GAS EQUIPMENT

Authors

  • Ігор Лютак Івано-Франківський національний технічний університет нафти і газу
  • Zinovij Liutak Ivano-Frankivsk National Technical University of Oil and Gas

DOI:

https://doi.org/10.31471/2304-7399-2025-20(76)-257-271

Keywords:

ультразвук, керовані хвилі, моделювання, скінченні елементи, неоднорідність, пружне середовище.

Abstract

This paper analyses current methods of non-destructive testing (NDT) for evaluating the technical condition of oil and gas equipment, focusing on strain gauge and ultrasonic techniques. Their advantages and limitations under complex geological conditions are reviewed. Improvements are proposed via temperature compensation in strain gauges and new piezoelectric transducer designs. The influence of thermal variations on transducer frequency characteristics is studied, and methods are proposed to stabilize acoustic coupling. Resonant frequencies of novel piezo plates and their ability to detect metal anisotropy are determined. A newly developed thickness gauge enables continuous monitoring of pipe walls, including oval cross-sections, which is essential for long-distance gas pipelines.

References

1. Chen Mu, Li J., Zhang Y. Ultrasonic multi-mode total focusing method for pipe axial defects in inaccessible and distant areas // Measurement. 2025. Vol. 251. P. 117238. DOI: 10.1016/j.measurement.2025.117238.

2. Pengchao Chen. Advancements and future outlook of safety monitoring, inspection and assessment technologies for oil and gas pipeline networks // Journal of Pipeline Science and Engineering. 2025. Vol. 5, iss. 1. P. 100267. DOI: 10.1016/j.jpse.2025.100267.

3. Teng Feiyu, Wang L., Zhang H. Improved-probabilistic imaging algorithm for separation problem of helical scattered path in pipeline ultrasonic guided wave inspection // Measurement. 2025. Vol. 246. P. 117474. DOI: 10.1016/j.measurement.2025.117474.

4. Wu Jing, Li X., Zhao Y. Weak ultrasonic guided wave signal recognition based on one-dimensional convolutional neural network denoising autoencoder and its application to small defect detection in pipelines // Measurement. 2025. Vol. 242. P. 116234. DOI: 10.1016/j.measurement.2025.116234.

5. Yi Jiang, Liu W., Chen H. Development and application of D1016 mm phased array ultrasonic internal inspection robot system for natural gas pipeline circumferential welds // Protection on Oil & Gas Pipelines. 2025. Vol. 2, iss. 1. P. 50–57.

6. Zang Xulei, Yang Q., Li M. Characterization of multi defects in buried pipelines using coded excitation nonlinear chirp T (0, 1) mode ultrasonic guided waves // International Journal of Pressure Vessels and Piping. 2025. Vol. 216. P. 105503. DOI: 10.1016/j.ijpvp.2025.105503.

7. Fan Qunying, Li X., Zhang Y. Research on distributed displacement monitoring and strain inversion assessment methods for buried pipelines in fracture zones // Tunnelling and Underground Space Technology. 2025. Vol. 159. P. 106430. DOI: 10.1016/j.tust.2025.106430.

8. Huang Jie, Wang H., Chen L. Development and Simulation Analysis of a Novel Flexible Deformation Inspection Units (FDIU) for Oil and Gas Pipelines // Available at SSRN 5077423. 2025.

9. Sun Zhen, Liu W., Zhao Q. Pipeline deformation monitoring based on long-gauge fiber-optic sensing systems: Methods, experiments, and engineering applications // Measurement. 2025. Vol. 242. P. 116911. DOI: 10.1016/j.measurement.2025.116911.

10. Yan Bing-Chuan, Zhang J., Li M. Cyclic pressure testing of full-scale pipes to evaluate fatigue damage to girth welds containing welding defects // Engineering Failure Analysis. 2025. Vol. 169. P. 109216. DOI: 10.1016/j.engfailanal.2025.109216.

11. Лютак І. З. Математична модель методу контролю донних дефектів ультразвуковими спрямованими кільцевими хвилями // Східно-Європейський журнал передових технологій. – 2010. – № 5/4 (47). – С. 53–57.

Published

2025-07-02

How to Cite

Лютак, І., & Liutak, Z. (2025). IMPROVEMENT OF METHODS AND TOOLS FOR MONITORING THE CONDITION OF OIL AND GAS EQUIPMENT. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (20(76), 257–271. https://doi.org/10.31471/2304-7399-2025-20(76)-257-271