MULTIPLICATIVE CONVOLUTION FOR THE BLOCK-SYMMETRIC POLYNOMIALS
DOI:
https://doi.org/10.31471/2304-7399-2025-20(76)-48-58Keywords:
block-symmetric polynomial, block-symmetric analytic function, spectrum, multiplicative convolutionAbstract
This paper investigates the concept of multiplicative convolution for block-symmetric polynomials defined on infinite-dimensional spaces of the form $\ell_p(C^s)$. A multiplicative shift operation and the corresponding convolution operator are developed for the algebra of block-symmetric analytic functions of bounded type. It is shown that the defined convolution is both commutative and associative, forming a commutative semiring with unity on the spectrum of the algebra. Estimates for the spectral radius function of homomorphisms are provided, and essential properties such as linearity, continuity, and compatibility with the algebraic structure are established. The construction of spectral elements with prescribed values on elementary polynomials is proposed. This work generalizes earlier results for the $\ell_1(C^s)$ case to the broader setting of arbitrary $1 < p < \infty$, contributing to the theory of symmetric analytic functions in infinite-dimensional analysis.
References
1. Weyl H. The classical groups: their invariants and representations. Princeton University Press, Princeton, New Jersey, 1973.
2. Aron R.M., Galindo P., Garcia D., Maestre M. Regularity and algebras of analytic functions in infinite dimensions. Trans. Am. Math. Soc. 1996, 348, 543–559. https://doi.org/10.1090/S0002-9947-96-01553-X
3. Aron R.M., Cole B.J., Gamelin T.W. Spectra of algebras of analytic functions on a Banach space. J. Reine Angew. Math. 1991, 415, 51–93.
4. Aron R.M., Cole B.J., Gamelin T.W. Weak-star continuous analytic functions. Can. J. Math. 1995, 47, 673–683. https://doi.org/10.4153/CJM-1995-035-1
5. Bandura A., Kravtsiv V., Vasylyshyn T. Algebraic basis of the algebra of all symmetric continuous polynomials on the Cartesian product of l p -spaces. Axioms 11 (2022), 41. ttps://doi.org/10.3390/axioms11020041
6. Chernega I., Galindo P., Zagorodnyuk A. The convolution operation on the spectra of algebras of symmetric analytic functions. J. Math. Anal. Appl. 2012, 395, 569–577. https://doi.org/10.1016/j.jmaa.2012.04.087
7. Chernega I., Galindo P., Zagorodnyuk A. A multiplicative convolution on the spectra of algebras of symmetric analytic functions. Rev. Math. Complut. 2014, 27, 575–585. https://doi.org/10.1007/s13163-013-0128-0
8. Gonzalez M., Gonzalo R., Jaramillo J.A. Symmetric polynomials on rearrangement-invariant function spaces. Carpathian Math. Publ. 59 (1) (1999), 681–697. https://doi.org/10.1112/S0024610799007164
9. Kravtsiv V., Vasylyshyn T., Zagorodnyuk A. On algebraic basis of the algebra of symmetric polynomials on l p (Cn ). J. Funct. Spaces 2017, Article ID 4947925. https://doi.org/10.1155/2017/4947925
10. Kravtsiv V.V., Zagorodnyuk A.V. Multiplicative convolution on the algebra of block-symmetric analytic functions. J. Math. Sci. 246 (2) (2020), 245–255. https://doi.org/10.1007/s10958-020-04734-z
11. Kravtsiv V.V., Zagorodnyuk A.V. Spectra of algebras of block-symmetric analytic functions of bounded type. Mat. Stud. 58 (2022), 69–81. https://doi.org/10.30970/ms.58.1.69-81
12. Nemirovskii A., Semenov S. On polynomial approximation of functions on Hilbert space. Mat. USSR-Sb. 21 (1973), 255–277. https://doi.org/10.1070/SM1973v021n02ABEH002016
13. Rosas M. MacMahon symmetric functions, the partition lattice, and Young subgroups. J. Combin. Theory Ser. A 96 (2001), 326–340. https://doi.org/10.1006/jcta.2001.3186