SYMMETRIC POLYNOMIALS ON CARTESIAN PRODUCTS OF REAL BANACH SPACES OF ABSOLUTELY SUMMABLE SEQUENCES
DOI:
https://doi.org/10.31471/2304-7399-2025-20(76)-24-38Keywords:
polynomial, symmetric function, algebraic basis, Banach spaceAbstract
Let $\ell_p^{(\mathbb{R})}$ be the real Banach space of all absolutely summable in the power $p\in [1,+\infty)$ sequences of real numbers. For $n\in\N,$ let $\ell_{p_1}^{(\mathbb{R})}\times\ldots\times \ell_{p_n}^{(\mathbb{R})}$ be the Cartesian product of Banach spaces $\ell_{p_1}^{(\mathbb{R})},\ldots, \ell_{p_n}^{(\mathbb{R})},$ where $p_1,\ldots,p_n\in [1,+\infty).$ We consider the space $\ell_{p_1}^{(\mathbb{R})}\times\ldots\times \ell_{p_n}^{(\mathbb{R})}$ as the space of all sequences $x= (x_1,x_2,\ldots)$ of $n$-dimensional vectors $x_j = \bigl( x_j^{(1)},\ldots,x_j^{(n)} \bigr),$ where $j\in\mathbb{N},$ such that the sequence $\bigl( x_1^{(s)}, x_2^{(s)},\ldots \bigr)$ belongs to the space $\ell_{p_s}^{(\mathbb{R})}$ for every $s\in \{1,\ldots,n\}.$ A function $f$ defined on the space $\ell_{p_1}^{(\mathbb{R})}\times\ldots\times \ell_{p_n}^{(\mathbb{R})}$ is called symmetric if $\displaystyle f\bigl( \bigl( x_{\sigma(1)},x_{\sigma(2)},\ldots \bigr) \bigr) = f((x_1,x_2,\ldots)) $ for every $(x_1,x_2,\ldots) \in \ell_{p_1}^{(\mathbb{R})}\times\ldots\times \ell_{p_n}^{(\mathbb{R})}$ and for every bijection $\sigma:\mathbb{N}\to\mathbb{N}.$ We show that the set $\displaystyle \left\{ H_{\boldsymbol{p},\boldsymbol{k}}^{(\R)}:\; \k\in\mathbb{Z}_+^n\;\textrm{such that}\;k_1/p_1+\ldots+k_n/p_n \geq 1 \right\} $References
1. Bandura A., Kravtsiv V., Vasylyshyn T. Algebraic basis of the algebra of all symmetric continuous polynomials on the Cartesian product of $ell_p$ -spaces, Axioms, 11 (2022), no. 2, art. no. 41. https://doi.org/10.3390/axioms11020041
2. Mujica J. Complex Analysis in Banach Spaces. North Holland, 1986.
3. Vasylyshyn T. Symmetric functions on spaces $ell_p(R^n)$ and $ell_p(mathbb{C}^n)$, Carpathian Math. Publ., 12 (2020), no. 1, 5–16. https://doi.org/10.15330/cmp.12.1.5-16
Downloads
Published
2025-07-02
How to Cite
Vasylyshyn, T., Varvariuk, M., Nykorovych, I., & Ponomarov, R. (2025). SYMMETRIC POLYNOMIALS ON CARTESIAN PRODUCTS OF REAL BANACH SPACES OF ABSOLUTELY SUMMABLE SEQUENCES. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (20(76), 24–38. https://doi.org/10.31471/2304-7399-2025-20(76)-24-38
Issue
Section
Mathematics and Mechanics