OBTAINING THE STIFFNESS MATRIX OF THE CARRYING CABLE OF A SINGLE-SPAN SUSPENSION PIPELINE

Authors

  • E.Y. Ripetskyi Ivano-Frankivsk National Technical University of Oil and Gas
  • R.Y. Ripetskyi Ivano-Frankivsk National Technical University of Oil and Gas
  • O.I. Nepelyak Ivano-Frankivsk National Technical University of Oil and Gas

DOI:

https://doi.org/10.31471/2304-7399-2025-20(76)-227-243

Keywords:

carrying cable, suspension pipeline, span, deflection boom, stiffness matrix, numerical methods, discrete model.

Abstract

The paper considers the development of a discrete model of the carrying cable of a suspension pipeline, in which the suspension attachment points are simultaneously serve as the points for discretizing the cable parameters. To obtain the stiffness matrix of the carrying cable, the behavior of two processes was modeled: the sag of the supporting cable under its own weight and additional load. The discrete model was constructed in two stages. First, the values of vertical coordinates were obtained in the case of symmetrical loading. The second stage involved verification of the model and its extension to asymmetric loading.

The application of numerical calculation methods based on a discrete model made it possible to obtain the coordinates of the cable's nodal points in two extreme positions - the initial one and under the action of five equal forces of 20 KN each, which were applied to the nodes. The linearization of the dependence “force-displacement of a knot” was carried out over the interval of change in the additional force load [0...20 KN]. This made it possible to determine the shares of each force in the total vector of node displacements. On the basis of these data the linearized matrix of pliability of flexible carrying cable with nonlinear characteristics of the system “pipeline - carrying cable” was finally obtained. An example of using the ductility matrix to determine the displacements of the cable nodes under asymmetric additional load is shown.

References

1. Грудз В. Я., Тимків Д. Ф., Михалків В. Б., Костів В. В. Обслуговування і ремонт газопроводів. – Івано-Франківськ: Лілея-НВ, 2009. – 712 с.

2. Киреенко В. И. Висячие трубопроводные переходы / В. И. Киреенко, В. Н. Шимановский, Д. А. Коршунов, Ю. В. Смирнов. – К.:Будівельник, 1968, – 158 с.

3. Солдатов К. И. Собственные колебания висячих трубопроводных переходов//Наука и прогресс транспорта. Вестник Днепропетровского национального университета железнодорожного транспорта / ДИИТ. – Д., 2005. – Номер 6. – С. 97–119.

4. Arco D. C., Aparicio, A. C. Simplified Numerical Analysis of Suspension Bridges //Proceedings of the fourth international bridge engineering conference, San Francisco, California, August 28-30, 1995: Volume 2, -p. 324-334/

5. Vertical Deformation Monitoring of the Suspension Bridge Tower Using GNSS: A Case Study of the Forth Road Bridge in the UK/Qusen Chen, Weiping Jiang, Xiaolin Meng, Peng Jiang, Kaihua Wang, Yilin Xie, Jun Ye//Remote Sens. 2018, 10, p.364-372

6. Gimsing N.J., Georgakis С.T. Cable Supported Bridges. Concept and Design. 3rd Ed. LtdJohn Wiley & Sons, 2012. 592 p.

7. Беркман М. Б.,и др. Подвесные канатные дороги. –М.:Машиностроение 1984. – 264с.

8. Адамовський М. Г., Мартинців М.П. Бадера Й.С. Підвісніканатні лісотранспортні системи.–К.: ІЗМН. 1997. –156 с.

9. Тисовський Л.О., Рудько І.М. Дослідження закономірностей руху вантажу вздовж канатної транспортної установки. Підйомно-транспортна техніка. 2005. Вип. 4(16). С. 12-18.

10. Gimsing, N.J.,Georgakis, C.T. (2012) Cable Supported Bridges: Concept and Design. 3rd Edition, John Wiley & Sons Ltd., Chichester, UK.

11. Synge J.L., Griffith B.A. Principles of mechanics. –New York: Mcgraw Hill Book Company, 1959. – 515 p.

12. Беляев Н. М. Сопротивление материалов. – М.: Главная редакция физико-математической литературы изд-ва «Наука», –1976 г., – 608 с.

13. Тисовський Л.О., Рудько І.М. До визначення рівняння кривої прогину каната підвісної транспортної установки // Науковий вісник: Збірник науково-технічних праць. – Львів: УкрДЛТУ. – 2005, вип. 15.1. – с. 137 – 142.

14. Dong-Ho C., Sun-Gil G, Ho-Sung N.Simplified Analysis for Preliminary Design of Towers in Suspension Bridges. Journal of Bridge Engineering Volume: 19 –2014 – p.04013007–1- 04013007-12.

15. Starossek U. Dynamic Stiffness Matrix of sagging Cable// Journal of engineering mechanics 117(1991) 12, –p.2815-2829.

16. Grigorjeva T. Paeglitis A. The simplified analysis of the asymmetric single-pylon suspension bridge with rigid cables// Engineering Structures and Technologies 12(2), (2021): –p.61-66.

Published

2025-07-02

How to Cite

Ripetskyi, E., Ripetskyi, R., & Nepelyak, O. (2025). OBTAINING THE STIFFNESS MATRIX OF THE CARRYING CABLE OF A SINGLE-SPAN SUSPENSION PIPELINE. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (20(76), 227–243. https://doi.org/10.31471/2304-7399-2025-20(76)-227-243