Investigation of differential pursuit games under perturbation of the motion equation

Authors

  • Andrii Bardan

DOI:

https://doi.org/10.31471/2304-7399-2025-20(76)-65-81

Keywords:

differential pursuit game, multi-frequency perturbation, disturbance, averaging method, oscillatory integral, resonance, control, small parameter, Wronskian determinant

Abstract

The article investigates differential pursuit games in conditions where the movement of the pursuer and the escaper is affected by external small disturbances. Similar problems but without taking into account perturbations were considered in the works of A.O. Chikrii. In this article the problem is considered in the case where the control matrix changes slowly over time and is affected by multi-frequency disturbances.

The averaging method is justified in the case of slowly changing frequencies. Estimates of the deviation were constructed between the solutions of the exact and averaged systems under the same initial conditions on a finite time interval.

An example of a modified differential game "Crocodile and Boy" with imposed disturbances is given. The pursuit completion time for the averaged model is found. The influence of disturbances with different strength on the game completion time is analyzed. The obtained results can be applied in various control problems, where it is important to take into account the influence of external factors on the behavior of participants in dynamic processes.

References

1. Isaacs R. Differential Games: A Mathematical Theory With Applications to Warfare, Control and Optimization. Dover Publications, 1999. 416 p.

2. Pshenychnyi B. M. e-Strategies in Differential Games. Topics in differential games. 1973. P. 45–99.

3. Chikrii A. O. Conflict-controlled processes. Boston: Springer Science and Business Media, 2013. 424 p.

4. Chikrii A. O., Petryshyn R. I., Cherevko I. M., Bihun Ya. I. Method of Resolving Functions in the Theory of Conflict-Controlled Processes. Advanced Control Techniques in Complex Engineering Systems. 2019. Т. 203. P. 3-33.

5. Liubarshchuk Ye. A., Bihun Ya. I., Cherevko I. M. Non-stationary Differential-Difference Games of Neutral Type. Dynamic Games and Applications. 2019. Т. 9, № 3. P. 771-779.

6. Liubarshchuk Ye. A., Bihun Ya. I., Cherevko I. M. Game Problems for Systems with Variable Delay. Journal of Automation and Information Sciences. 2016. Т. 48, № 4. P. 18-31.

7. Самойленко А. М., Петришин Р. І. Математичні аспекти теорії нелінійних коливань. Київ: Наукова думка, 2004. 474 с.

8. Бардан А.О. Усереднення в задачі диференціальної гри переслідування за наявності багаточастотних збурень. Науковий вісник Ужгородського університету. Серія «Математика і інформатика». 2024. Т. 45, № 2. С. 18–28. URL: https://doi.org/10.24144/2616-7700.2024.45(2).18-28.

9. Pachpatte B. Inequalities for Differential and Integral Equations. New York: Academic Press, 1998. 611 p.

Published

2025-07-02

How to Cite

Bardan, A. (2025). Investigation of differential pursuit games under perturbation of the motion equation. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (20(76), 65–81. https://doi.org/10.31471/2304-7399-2025-20(76)-65-81