ON ONE NONLINEAR MATHEMATICAL MODEL OF BLOOD CIRCULATION WITH THE VESSEL WALLS REACTION WITHIN THE HEREDITARY THEORY

Authors

  • P.Ya. Pukach Lviv Politechnic National University
  • M.I. Vovk Lviv Politechnic National University
  • P.P. Pukach Lviv Politechnic National University

DOI:

https://doi.org/10.31471/2304-7399-2022-17(64)-31-43

Keywords:

mathematical model, nonlinear vibrations, Galerkin method, biofactor, blood circulation, vessel.

Abstract

The research demonstrates sufficient conditions of the existence and uniqueness for the solution in the oscillation mathematical model of the blood flow under nonlinear dissipative forces action within the theory of hereditary tube with biofactor. The obtained qualitative results advocate the application of Galerkin method to the above-mentioned problem. These results facilitated the application of different (explicit and implicit) numerical methods in further studies of the dynamical characteristics of solutions in the considered oscillation mathematical models. Numerical integration of the movement equations by Runge-Kutta 4th order method and Geer 2nd order method in a model case within this research enabled the estimation of the influence of different physical and mechanical factors on the amplitude and frequency of the oscillation process. The use of hybrid methods for the oscillation modeling in the nonlinear isotropic elastic environment on the
example of a vessel enabled the formulation of the equation of an object’s mechanical state based on energy approaches and the theory of mechanical fields in the continuous environments.

References

Marchuk G.I. Mathematical models in immunology / Marchuk G.I. – Moscow: Nauka, 1985 [in Russian].

Haier E. Solution of ordinary differential equations. Rigid and differential-hyperbolic problems / Haier E., G. Wiener. – Moscow: Mir, 1999 [in Russian].

Belotserkovsky O.M. Computer models and medical progress / Belotserkovsky O.M., Kholodov A.S. – Moscow: Nauka, 2001 [in Russian].

Belotserkovsky O.M. Computer and brain. New technologies / Belotserkovsky O.M. – Moscow: Nauka, 2005 [in Russian].

Samarsky A.A. Theory of difference schemes / Samarsky A.A. – Moscow: Nauka, 1977 [in Russian].

Kondaurov V.I. Final deformations of viscoelastic muscle tissues / Kondaurov V.I., Nikitin A.V. // Applied Mathematics and Mechanics. – 1987. – 51(3). – P. 443–452 [in Russian].

Grytsenko O.M. The Scheffe’s method in the study of mathematical model of the polymeric hydrogels composite structures optimization / Grytsenko O.M., Pukach P.Ya., Suberlyak O.V., Moravskyi V.S., Kovalchuk R.A., Berezhnyy B.V. // Mathematical Modeling and Computing. – 2019. – 6(2). – P. 258–267.

Kondaurov V.I. Model of biologically active viscoelastic body / Kondaurov V.I., Nikitin L.V. // Methods of calculation of products from highly elastic materials (Riga, USSR). – 1986. – P. 107–108 [in Russian].

Akhundov M.B. Forced vibrations of elastic and viscoelastic rods in contact with a medium with the property of self-regulation / Akhundov M.B. // Herald of Baku State University. – 2011. – 2. – P. 63–72 [in Russian].

Gosta K.D. A three dimensional limite elements method for large elastic deformations of ventricular myocardium. Part I / Gosta K.D., Hunter P.J., Pogers J.M., Gussione G.M., Waldman L.K., McCulloch A.D. // J. Biomech. Eng. – 1986. – 118(4). – P. 452–463.

Panda S.C. Finite-element method of stress analysis in the human left ventricular layered wull structure / Panda S.C., Natarajon R. // Med. Biol. Eng. Comp. – 1977. – 15. – P. 67–71.

Petrov I.B. On numerical modeling of biomechanical processes in medical practice / Petrov I.B. // Information technologies and computer systems. – 2003. – 1-2. – P. 102–111[in Russian].

Begun P.I. Modeling in biomechanics / Begun P.I., Afonin P.N.- Moscow: Higher School, 2004 [in Russian].

Abakumov M.V. Methods of mathematical modeling of the cardiovascular system Abakumov M.V., Ashmetov I.V., Eshkova N.B., Koshelev V.B., Mukhin S.I., Sosnin N.V., Tishkin V.F., Favorsky A.P., Khrumenko A.B. // Mathematical modeling. – 2000. – 12(2). – P. 106–117 [in Russian].

Ashmetov I.V. Mathematical modeling of hemodynamics in the brain and in the great circle of blood circulation / Ashmetov I.V., Bunicheva A.Ya., Mukhin S.I., Sokolova T.V., Sosnin N.V., Favorsky A.P. – Moscow: Nauka, 2005 [in Russian].

Kholodov A.S. Some dynamic models of external respiration and blood circulation taking into account their connectivity and transport / Kholodov A.S. – Moscow: Nauka, 2001 [in Russian].

Evdokimov A.V. Quasi-stationary spatially distributed model of closed blood circulation of the human body / Evdokimov A.V., Kholodov A.S. – Moscow: Nauka, 2001 [in Russian].

Pukach P. Ya. Analytical methods for determining the effect of the dynamic process on the nonlinear flexural vibrations and the strength of compressed shaft / Pukach P. Ya., Kuzio I. V., Nytrebych Z. M., Ilkiv V. S. // Naukovyi Visnyk Natsіonalnoho Hіrnychoho Unіversytetu. – 2017. – 5. – P. 69-76.

Nasibov V.G. Waves in a multilayer tube of variable cross section with flowing viscous liquid / Nasibov V.G. // Proceedings of the IMM of the

Azerbaijan Academy of Sciences. – 1997. – VI (XIV). – P. 245-258 [in Russian].

Nasibov V.G. Pulsating flow of a viscous liquid in a multilayer elastic tube of variable cross section with reaction / Nasibov V.G. – Collection of scientific works on mechanics, Az ISU, Baku. – 1994. – P. 134-139 [in Russian].

Pukach P.Ya. Resonance phenomena in quasi-zero stiffness vibration isolation systems / Pukach P.Ya, Kuzio I.V. // Naukovyi Visnyk Natsіonalnoho Hіrnychoho Unіversytetu. – 2015. – 3. – P. 62-67.

Pukach P.Y. On the unboundedness of a solution of the mixed problem for a nonlinear evolution equation at a finite time / Pukach P.Y. //

Nonlinear Oscillations. – 2012. – 14(3). – P. 369-378.

Hale Jack K. The Theory of Ordinary Differential Equations / Jack K. Hale. – Malabar: Robert E. Krieger Publishing Company, 1980.

Published

2022-11-22

How to Cite

Pukach П., Vovk М., & Pukach П. (2022). ON ONE NONLINEAR MATHEMATICAL MODEL OF BLOOD CIRCULATION WITH THE VESSEL WALLS REACTION WITHIN THE HEREDITARY THEORY. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY Number, (17(64), 31–43. https://doi.org/10.31471/2304-7399-2022-17(64)-31-43