INTERACTION OF A SURFACE SOLITARY WAVE WITH SUBMERGED AND SEMI-SUBMERGED BREAKWATERS
DOI:
https://doi.org/10.31471/2304-7399-2022-17(64)-118-132Keywords:
solitary wave, semi-submerged curtain wall, submergedvertical barrier, reflection and transmission coefficients, laboratory experiment.Abstract
The interaction of a surface solitary wave with a semi-submerged curtain wall and an underwater barrier was experimentally investigated. The incident wave amplitude, the draft of the semi-submerged wall and the height of the submerged barrier were varied in different experiments to derive the most effective breakwater configurationin terms of reflection and transmission wave coefficients. It was obtained that the meeting of a solitary wave with the curtain wall looks as follows: the reflected wave is formed from the roll of the incident wave on the structure, and the transmitted wave grows after the passage of the liquid mass through the gap between the bottom and the lower part of the wall. The interaction of a solitary wave with a submerged barrier depends on the ratio of the incident wave amplitude to the thickness of the water column above the obstacle. When its value is less than a critical value, which is about 1, the incident wave splits smoothly into reflected and transmitted solitons. Otherwise, intense chaotic oscillations of the free surface occur above the obstacle. Evaluations of wave reflection and transmission coefficients showed that thin vertical barriers are sufficiently effective in reducing the intensity of nonlinear solitary waves. The target protection can be achieved by choosing the best draft of the impervious part of the curtain wall or the optimal height of the submerged barrier. A semi-submerged wall was shown to be more effective for damping the energy of a solitary wave compared to an underwater barrier installed on the bottom. The curtain wall can dissipate up to 60% of the energy of the incident wave, while the submerged barrier - up to 20%.
References
Wu Y.-T. Propagation of solitary wave soverdouble submerged barriers /Y.-T. Wu, S.-C. Hsiao // Water. – 2017. – Vol. 9, Issue 12. – P. 917-17.
Pelinovsky E. Solitary wave transformation on the underwater step: Asymptotic theory and numerical experiments / E. Pelinovsky, B. H. Choi, T. Talipova, S. D. Woo, D. C. Kim // Applied Mathematics and Computa-tion. – 2010. – Vol. 217, Issue 4. – P. 1704-1718.
Liu P.L.-F. A numerical study of the evolution of a solitary wave over a shelf / P. L.-F. Liu, Y. Cheng // Physics of Fluids. – 2001. – Vol. 13, Is-sue 6. – P. 1660-1667.
Lu J. Numerical study of solitary wave fission over an underwater step /J. Lu, X. Yu // Journal of Hydrodynamics. – 2008. – Vol. 20, Issue 3. – P. 398-402.
LinP. A numerical study of solitary wave interaction with rectangular obstacles / P. Lin // Coastal Engineering. – 2004. – Vol. 51, Issue1. – P. 35-51.
Chang K.-A. Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle. Part 1. Solitary waves / K.-A. Chang, T.-J. Hsu, P. L.-F. Liu// Coastal Engineering. – 2001. – Vol. 44, Issue 1. – P. 13-36.
Fridman A.M. Tsunami wave suppression using submarine barriers / A.M. Fridman, L.S. Alperovich, L. Shemer, et al. // Physics. – 2010. – Vol. 53, Issue 8. – P. 809-816
Wang J. Numerical study on interaction of a solitary wave with the submerged obstacle /J. Wang, G. He, R. You, P. Liu // Ocean Engineering. – 2018. –Vol. 158. – P. 1-14.
Lin C. Vortex shedding induced by a solitary wave propagating over a submerged vertical plate / C. Lin, T.-C. Ho, S.-C. Chang // International Journal of Heat and Fluid Flow. – 2005. – Vol. 26, Issue 6. – P. 894-904.
Lin C. Characteristics of vortex shedding process induced by a solitary wave propagating over a submerged obstacle / C. Lin, T.-C. Ho, S.-C. Hsieh, K.-A. Chang // Proceedings of OMAE 2006 25th International Conference on Offshore Mechanics and Arctic Engineering June 4-9, 2006, Hamburg, Germany.
Chang C.-H. Numerical simulations and experimental visualization soft-hevortex characteristics fora solitary wave interacting with a bottom-mounted vertical plate / C.-H. Chang, C. Lin, K.-H. Wang, J. M. Jaf // Journal of Hydro-Environment Research. – 2018. – Vol. 19. – P. 88-102.
Liu P. L.-F. Solitary wave runup and force on a vertical barrier /P. L.-F. Liu, K. AL-Banaa // Journal of Fluid Mechanics. – 2004. – Vol. 505. – P. 225-233.
Shao S. SPH simulation of solitary wave interaction with a curtain-type breakwater / S. Shao //Journal of Hydraulic Research. – 2005. –Vol. 43, Is-sue 4. – P. 366-375.
Ketabdari M. J.WCSPH simulation of solitary wave interaction with a curtain-type breakwater / M. J. Ketabdaria, N. Kamania, M. H. Moghaddam // AIP Conference Proceedings. –1648, 2015.
Monaghan J.J. Scott Russell’s wave generator / J.J. Monaghan, A. Kos // Physics of Fluids. –2000. – Vol.12. – P.622-630.
Городецький О.В.Генерація, розповсюдження та накат відокремлених хвиль на берегові схили /О. В. Городецький, А. С. Котельнікова, В. І. Нікішов, В. В. Олексюк. та ін. // Прикладна гідромеханіка. – 2010. – Том 12 (84), №1. – С.40-47.
Hammack J.L. The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments / J.L.Hammack, H. Segur // Journal of Fluid Mechanics. – 1974. – Vol. 65. – P. 289-314.
Huang C.-J. On the interaction of a solitary wave and a submerged dike / C.-J. Huang, C.-M. Dong // Coastal Engineering. – 2001. – Vol. 43. – P. 265-286.
Nejadkazem O. Non-propagating waves and behavior of curtainwall-pile breakwaters / O. Nejadkazem, M. Gharabaghi, A. Reza // Journal of the Persian Gulf (Marine Science). – 2012. – Vol. 3, Issue 7. – P. 11-26.
Котельнікова А. С. Взаємодія поверхневих поодиноких хвиль з підводними перешкодами /А. С. Котельнікова, В. І. Нікішов, С. М. Срібнюк // Доповіді НАНУ.– 2012. – №7. – С.54-59.