ABOUT THE STRENGTH OF ISOTROPIC MATERIALS WITH SPATIAL STOCHASTIC DISTRIBUTION OF DEFECTS

Authors

  • Роман Іванович Квіт Lviv Polytechnic National University

Keywords:

axisymmetric loading, disc-shaped crack, isotropic material, Weibull distribution, probability of failure, statistical characte- ristics of strength

Abstract

The model of a stochastically defective body is considered, the strength study of which is based on the distribution function of failure loading in the form of the Weibull type. The body is under the conditions of a homogeneous axisymmetric loading and has evenly distributed disc-shaped cracks that do not interact with each other. The correlations for finding a number of fracture statistical characteristics are obtained: probability of failure, mean value, dispersion and variation coefficient of failure loading. The influence of applied loading type, the number of defects (body sizes) and material heterogeneity on the specified fracture statistical characteristics have been investigated.

References

1. Strnadel B. Statistical scatter in the fracture toughness and charpy impact energy of perlitic steel / B. Strnadel, P. Hausild // Mater. Sci. and Eng.: A. – 2008. – Vol. 486, No 1-2. – P. 208-214.
2. Bazant Z.P. Statistical aspects of quasibrittle size effect and lifetime with consequences for safety and durability large structures / Z.P. Bazant,
J.-L. Le, Q. Yu // Proc. of FraMCoS-7. – 2010. – P. 1-8.
3. Zsolt Bertalan. Fracture Strength: Stress concentration, extreme value statistics, and the fate of the Weibull distribution / Zsolt Bertalan, Ashivni
Shekhawat, James P. Sethna, Stefano Zapperi // Phys. Rev. – 2014.– Vol. 2 Is.3. – P. 034008.
4. Heckmann K. Comparative analysis of deterministic and probabilistic fracture mechanical assessment tools / K. Heckmann, Q. Saifi //
Kerntechnik. – 2016. – Vol. 81, No. 5. – P. 484-497.
5. Wen Luo. Fishnet statistics for probabilistic strength and scaling of nacreous imbricated lamellar materials / Wen Luo, Zdeněk P. Bažant //
Journal of the Mechanics and Physics of Solids. – 2017. – Vol. 109. – P. 264-287.
6. Витвицкий П.М. Прочность и критерии хрупкого разрушения стохастически дефектных тел / П.М. Витвицкий, С.Ю. Попина. – К.: Наукова думка, 1980. – 186 с.
7. Витвицький П.М. Визначення ймовірності руйнування при осессиметричному напруженому стані тіла з внутрішніми дископодібними тріщинами / П.М. Витвицький // Физ.-хим. механика материалов. – 1989. – No6. – С. 50-57.
8. Витвицький П.М. Імовірнісні критерії міцності для тіл зі стохастично розподіленими дископодібними тріщинами при осесиметричному на-
пруженому стані / П.М. Витвицький, Р.І. Квіт // Физ.-хим. механика материалов. – 1990. – No3. – С. 53-58.
9. Weibull W.A. A statistical theory of the strength of materials / W.A. Weibull // Proc. Roy. Swed. Inst. Eng. Res. – 1939. – No151. – P. 5-45.
10. Matsuo Yotaro. A probabilistic analysis of the brittle fracture loci under biaxial stress state / Matsuo Yotaro // Bulletin of the JSME. – 1981. – 24,
No188. – P. 290-294.

Published

2019-02-10

How to Cite

Квіт, Р. І. (2019). ABOUT THE STRENGTH OF ISOTROPIC MATERIALS WITH SPATIAL STOCHASTIC DISTRIBUTION OF DEFECTS. PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY. Number, (1(45), 100–108. Retrieved from https://pvntsh.nung.edu.ua/index.php/number/article/view/17

Issue

Section

Mathematics and Mechanics