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The work is devoted to the study of subsymmetric continuous linear
functionals on real and complex topological vector spaces of Lebesgue in-
tegrable functions on the semi-axis. We consider the class of such spaces
satisfying some natural conditions. The complete description of the struc-
ture of a subsymmetric continuous linear functional defined on an arbitrary
representative of this class has been found. Specifically, we show that every
such a functional can be represented as an integral of its argument up to
multiplication by a constant.

Key words: linear functional, subsymmetric function, Banach space,
Lebesgue integrable function.

1. Introduction

Subsymmetric polynomials and, in particular, subsymmetric linear functionals
on sequence Banach spaces were studied in [1] and [2]. In this work, we
consider the notion of subsymmetry for functions defined on some topologi-
cal vector spaces of Lebesgue integrable functions on the semi-axis. We
describe the structure of subsymmetric continuous linear functionals on these
spaces. Namely, we show that every such a functional can be represented
as the Lebesgue integral over the semi-axis multiplied by some constant
number. Result of this work can be used in the investigations of subsymmetric
polynomials on spaces of Lebesgue integrable functions.
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2. Results
For A ⊂ [0,+∞) and for t ∈ [0,+∞) we define

1A(t) =
{

1, if t ∈ A,
0, otherwise.

Let K∈{R,C}. For n∈N, let Dn be the set of all functions x : [0,+∞)→
K such that, for every j ∈ N,

x(t) = a j (1)

for t ∈
[ j−1

2n , j
2n

)
, where a1,a2, . . . ∈ K are such that ∑

∞
j=1 |a j| < ∞. Denote

D =
⋃

∞
n=1 Dn. Let X [0,+∞) be a topological vector space over K of classes

of equivalence (with respect to the equivalence relation x1 ∼ x2 ⇐⇒ x1
a.e.
= x2)

of Lebesgue measurable functions x : [0,+∞)→ K with the usual operations
of addition and multiplication by scalars such that the following conditions
are satisfied:

(1) Every x ∈ X [0,+∞) is Lebesgue integrable, i.e. the integral∫
[0,+∞)

|x(t)|dt

is finite.
(2) The functional g : X [0,+∞)→K, defined by

g(x) =
∫
[0,+∞)

x(t)dt, (2)

where x ∈ X [0,+∞), is continuous.
(3) The set D is dense in X [0,+∞).

(4) For every n ∈ N and for every x ∈ Dn of the form (1), the series
∑

∞
j=1 a j1[ j−1

2n , j
2n

] is weakly convergent to x.

(5) For every a,b ∈ [0,+∞) such that a < b and for every x ∈ X [0,+∞), the
function β[a,b](x) : [0,+∞)→K, defined by

β[a,b](x)(t) =


x(t), if t < a,
0, if t ∈ [a,b],
x(t −b+a), if t > b

(3)

for t ∈ [0,+∞), belongs to X [0,+∞).
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In particular, the space L1[0,+∞) of all K-valued Lebesgue integrable
functions on [0,+∞) can serve as an instance of X [0,+∞).

A function f : X [0,+∞)→K is called subsymmetric if

f
(
β[a,b](x)

)
= f (x)

for every x ∈ X [0,+∞) and a,b ∈ [0,+∞) such that a < b, where β[a,b] is
defined by (3).

Our goal is to describe all subsymmetric linear continuous functionals
on X [0,+∞). First, we prove some auxiliary results.

Lemma 2.1. Let f : X [0,+∞) → K be a subsymmetric function. Then, for
every a,b,c ∈ [0,+∞) such that a < b,

f
(
1[a,b]

)
= f

(
1[a+c,b+c]

)
.

Proof. By (3),
β[0,c]

(
1[a,b]

)
= 1[a+c,b+c].

Therefore, since f is subsymmetric,

f
(
1[a,b]

)
= f

(
1[a+c,b+c]

)
.

This completes the proof.

Lemma 2.2. Let f : X [0,+∞)→K be a subsymmetric linear functional. Then,
for every a ∈ [0,+∞) and m ∈ N,

f
(
1[0,ma]

)
= m f

(
1[0,a]

)
.

Proof. Since

[0,ma] = [0,a]⊔ (a,2a]⊔ . . .⊔ ((m−1)a,ma],

it follows that

1[0,ma] = 1[0,a]+1(a,2a]+ . . .+1((m−1)a,ma].

Therefore, by the linearity of f ,

f
(
1[0,ma]

)
= f

(
1[0,a]

)
+ f

(
1(a,2a]

)
+ . . .+ f

(
1((m−1)a,ma]

)
. (4)

Since 1(a,2a]
a.e.
= 1[a,2a], . . . ,1((m−1)a,ma]

a.e.
= 1[(m−1)a,ma], it follows that

f
(
1(a,2a]

)
= f

(
1[a,2a]

)
, . . . , f

(
1((m−1)a,ma]

)
= f

(
1[(m−1)a,ma]

)
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and, consequently, by (4),

f
(
1[0,ma]

)
= f

(
1[0,a]

)
+ f

(
1[a,2a]

)
+ . . .+ f

(
1[(m−1)a,ma]

)
. (5)

By Lemma 2.1, one has

f
(
1[0,a]

)
= f

(
1[a,2a]

)
= . . .= f

(
1[(m−1)a,ma]

)
.

Therefore, by (5), we obtain

f
(
1[0,ma]

)
= m f

(
1[0,a]

)
.

This completes the proof.

Lemma 2.3. Let f : X [0,+∞)→K be a subsymmetric linear functional. Then,
for every n, j1, j2 ∈ N such that j1 < j2,

f
(

1[ j1
2n ,

j2
2n

])= µ

([ j1
2n ,

j2
2n

])
f
(
1[0,1]

)
,

where µ is the Lebesgue measure on [0,+∞).

Proof. Let n, j1, j2 ∈ N be such that j1 < j2, Note that[
0,

j2
2n

]
=
[
0,

j1
2n

]
⊔
( j1

2n ,
j2
2n

]
.

Therefore
1[

0, j2
2n

] = 1[
0, j1

2n

]+1( j1
2n ,

j2
2n

].
Consequently, by the linearity of f ,

f
(

1[
0, j2

2n

])= f
(

1[
0, j1

2n

])+ f
(

1( j1
2n ,

j2
2n

]). (6)

Since 1( j1
2n ,

j2
2n

] a.e.
= 1[ j1

2n ,
j2
2n

], it follows that
f
(

1( j1
2n ,

j2
2n

])= f
(

1[ j1
2n ,

j2
2n

]).
Consequently, by (6), the following equality is valid

f
(

1[
0, j2

2n

])= f
(

1[
0, j1

2n

])+ f
(

1[ j1
2n ,

j2
2n

]).
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Therefore,

f
(

1[ j1
2n ,

j2
2n

])= f
(

1[
0, j2

2n

])− f
(

1[
0, j1

2n

]). (7)

By Lemma 2.2, we deduce

f
(

1[
0, j1

2n

])= j1 f
(

1[
0, 1

2n

]) and f
(

1[
0, j2

2n

])= j2 f
(

1[
0, 1

2n

]).
Therefore, by (7),

f
(

1[ j1
2n ,

j2
2n

])= ( j2 − j1) f
(

1[
0, 1

2n

]). (8)

By Lemma 2.2, one has

f
(
1[0,1]

)
= 2n f

(
1[

0, 1
2n

]).
Therefore, by (8),

f
(

1[ j1
2n ,

j2
2n

])=
( j2

2n −
j1
2n

)
f
(
1[0,1]

)
and, since µ

([
j1
2n ,

j2
2n

])
= j2

2n − j1
2n , it follows that

f
(

1[ j1
2n ,

j2
2n

])= µ

([ j1
2n ,

j2
2n

])
f
(
1[0,1]

)
.

This completes the proof.

Theorem 2.1. Let f : X [0,+∞) → K be a subsymmetric linear continuous
functional. Then

f (x) = k
∫
[0,+∞)

x(t)dt (9)

for every x ∈ X [0,+∞), where k = f
(
1[0,1]

)
.

Proof. First, let us show that (9) holds for every x ∈ D. Let x ∈ D. Then x
has the form (1) for some n ∈ N. Taking into account the continuity and the
linearity of f , and Condition 4 imposed on the space X [0,+∞), we can write

f (x) =
∞

∑
j=1

a j f
(

1[ j−1
2n , j

2n

]). (10)
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By Lemma 2.3,

f
(

1[ j−1
2n , j

2n

])= µ

([ j−1
2n ,

j
2n

])
f
(
1[0,1]

)
for every j ∈ N. Consequently, by (10),

f (x) = f
(
1[0,1]

) ∞

∑
j=1

a jµ
([ j−1

2n ,
j

2n

])
. (11)

Note that ∫
[0,+∞)

x(t)dt =
∞

∑
j=1

a jµ
([ j−1

2n ,
j

2n

])
.

Therefore, by (11), the equality (9) holds. So, (9) holds for every x ∈ D.
Therefore f (x) = kg(x) for every x ∈ D, where the functional g is defined
by (2) and k = f

(
1[0,1]

)
. By Condition 2 on X [0,+∞), the functional g is

continuous. By Condition 3 on X [0,+∞), the set D is dense in X [0,+∞).
So, the linear continuous functionals f and kg coincide on the dense subset of
X [0,+∞). Consequently, f (x) = kg(x) for every x∈X [0,+∞). This completes
the proof.
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Дану роботу присвячено дослiдженню субсиметричних неперервних
лiнiйних функцiоналiв на дiйсних i комплексних топологiчних векторних
просторах iнтегровних за Лебегом функцiй на пiвосi. Видiлено клас та-
ких просторiв, якi задовольняють певним природним умовам. Зроблено
повний опис структури субсиметричних неперервних лiнiйних функцiона-
лiв, визначених на довiльному представнику цього класу. А саме, показа-
но, що кожен такий функцiонал може бути поданий у виглядi iнтеграла
вiд свого аргументу з точнiстю до сталого множника.

Ключовi слова: лiнiйний функцiонал, субсиметрична функцiя, бана-
хiв простiр, iнтегровна за Лебегом функцiя.
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