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У багатьох прикладних задачах факторизацію симетричних полі-

номних матриць з дійсними і комплексними коефіцієнтами застосову-
ють для побудови синтезованого локально оптимального керування, 
побудови інтегрованих систем класичної механіки, зокрема, для 
розв’язування задачі Ейлера-Арнольда про рух багатовимірного твер-
дого тіла, більярдів у просторах сталої кривини. 

Для 𝛻𝛻-симетричних матриць над кільцем поліномів з інволюцією 
отримано умови існування факторизації 𝐴𝐴(𝑥𝑥) = 𝐵𝐵(𝑥𝑥)𝐶𝐶(𝑥𝑥)𝐵𝐵(𝑥𝑥)𝛻𝛻 із син-
гулярним множником 𝐵𝐵(𝑥𝑥) із заданою канонічною формою Сміта і си-
стемою нескінченних елементарних дільників. 

Встановлено відповідність між у факторизаціями 𝛻𝛻-
симетричних сингулярних поліномних матриць та 𝛻𝛻-симетричних ре-
гулярних поліномних матриць, яка здійснена з використанням понять 
зворотного та 𝑗𝑗-зворотного матричного поліномів та системи нескін-
ченних елементарних дільників. Ця відповідність базується на власти-
востях перетворень зворотного та 𝑗𝑗-зворотного матричних поліномів і 
понятті нескінченних елементарних дільників факторизованої матриці. 

Одержано необхідні і достатні умови існування факторизації 
оборотної над кільцем поліномів 𝛻𝛻-симетричної матриці 𝐴𝐴(𝑥𝑥) степеня 
𝑚𝑚, в якій множник 𝐵𝐵(𝑥𝑥) оборотна поліномна матриця степеня 
𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) = 𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥) 2⁄ . У таких факторизаціях виконується умова 
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рівності суми степенів факторизованих множників степеню фактори-
зованої матриці. Якщо ця умова рівності степенів не виконується, то 
існування факторизації 𝛻𝛻-симетричної оборотної матриці пов’язано з 
існуванням недопустимої факторизації 𝑗𝑗-зворотної поліномної матриці. 

Ключові слова: регулярна поліноміальна матриця, факторизація 
𝛻𝛻-симетричної поліномної матриці, канонічна форма Сміта, зворот-
ний та 𝑗𝑗-зворотний матричний поліном,скінченні і нескінченні елемен-
тарні дільники. 

 
Вступ 

Нехай 𝑀𝑀𝑛𝑛(𝐶𝐶[𝑥𝑥]) – кільце поліноміальних 𝑛𝑛 × 𝑛𝑛 матриць над 
полем комплексних чисел 𝐶𝐶 і 𝐺𝐺𝐿𝐿𝑛𝑛(𝐶𝐶[𝑥𝑥]) – повна лінійна групацього 
кільця. 

Розглянемо неособливу поліноміальну матрицю (матричний 
поліном) 𝐴𝐴(𝑥𝑥) степеня 𝑚𝑚 ≥ 1 вигляду 

𝐴𝐴(𝑥𝑥) = ∑ 𝐴𝐴𝑖𝑖𝑥𝑥𝑚𝑚−𝑖𝑖𝑚𝑚
𝑖𝑖=0 ,    𝐴𝐴𝑖𝑖 ∈ 𝑀𝑀𝑛𝑛(𝐶𝐶),      𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴 (𝑥𝑥) ≠ 0.           (1) 

Матрицю 𝐴𝐴(𝑥𝑥) називають регулярною, якщо 𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴0 ≠ 0 і 
унітальною, якщо старший матричний коефіцієнт 𝐴𝐴0 = 𝐸𝐸 – одинична 
матриця. У працях [1-4] була розроблена теорія виділення з матричного 
полінома 𝐴𝐴(𝑥𝑥) регулярного множника, тобто зображення 𝐴𝐴(𝑥𝑥) у 
вигляді 

𝐴𝐴(𝑥𝑥) = 𝐵𝐵(𝑥𝑥)𝐶𝐶(𝑥𝑥),                                     (2) 
де 𝐵𝐵(𝑥𝑥) = ∑ 𝐵𝐵𝑖𝑖𝑥𝑥𝑟𝑟−𝑖𝑖𝑟𝑟

𝑖𝑖=0 , причому 𝑑𝑑𝑑𝑑𝑑𝑑 𝐵𝐵0 ≠ 0. У роботі [5] було 
запропоновано метод факторизації (2) із сингулярним множником 𝐵𝐵(𝑥𝑥) 
(𝑑𝑑𝑑𝑑𝑑𝑑 𝐵𝐵0 = 0), а в [6] – із сингулярним множником 𝐵𝐵(𝑥𝑥) спеціального 
вигляду. 

Нехай 𝑓𝑓(𝑥𝑥) = ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑚𝑚−𝑖𝑖𝑚𝑚
𝑖𝑖=0  – деякий скалярний поліном, зокрема 

𝐴𝐴(𝑥𝑥) вигляду (1). Позначимо через rev 𝑓𝑓(𝑥𝑥) зворотний поліном до 𝑓𝑓(𝑥𝑥):  

rev 𝑓𝑓(𝑥𝑥) = �𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖
𝑚𝑚

𝑖𝑖=0

 

(походить від назви англ. reversal). Якщо 𝑑𝑑𝑑𝑑𝑑𝑑   𝑓𝑓(𝑥𝑥) = 𝑚𝑚, то, очевидно, 
що rev 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑚𝑚𝑓𝑓(1 𝑥𝑥⁄ ). 

Означення. Корені скалярного полінома 𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴 (𝑥𝑥) називають 
власними значеннями матриці 𝐴𝐴(𝑥𝑥).  

Відомо, що поліномні матриці можуть мати нескінченні власні 
значення [8], які пов’язані з відповідним понятттям нескінченних 
елементарних дільників. З метою визначення цього поняття розглянемо 
концепцію зворотного матричного полінома rev 𝐴𝐴(𝑥𝑥) до полінома 𝐴𝐴(𝑥𝑥), 
визначеного за аналогією до скалярного полінома. 

Якщо 𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴0 = 0 у матричному поліномі 𝐴𝐴(𝑥𝑥), то кажуть, що 𝐴𝐴(𝑥𝑥) 
має нескінченне власне значення кратності, що дорівнює кратності 
власного значення 𝜆𝜆 = 0 полінома rev 𝐴𝐴(𝑥𝑥). 
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Гохбергом, Каашуком та Ланкастером в [8] введено поняття 
“розширеного степеня” матричного полінома, який дозволяє деяким 
старшим матричним коефіцієнтам полінома дорівнювати нулю, а в 
роботі [7] введено поняття узагальненого зворотного полінома відносно 
деякого степеня вищого за степінь 𝑚𝑚 поліномної матриці 𝐴𝐴(𝑥𝑥). Ці 
введені у розгляд поняття визначають перетворення 𝑗𝑗-зворотного 
полінома, який дає можливість одержувати деякі додаткові нескінченні 
елементарні дільники поліномної матриці. 

Означення. 𝑗𝑗-зворотним матричним поліномом до матриці 𝐴𝐴(𝑥𝑥) 
степеня 𝑚𝑚 ≥ 1 вигляду (1) називають матричний поліном rev𝑗𝑗  𝐴𝐴, 
заданий рівністю 

rev 𝐴𝐴(𝑥𝑥) = 𝑥𝑥𝑗𝑗 𝐴𝐴(1 𝑥𝑥⁄ ),    𝑗𝑗 ≥ 𝑚𝑚.   (3) 
Зокрема, якщо 𝑗𝑗 = 𝑚𝑚, то 𝑗𝑗-зворотний матричний поліном 

збігається із зворотним, визначеним вище. 
Наприклад, нехай задано 𝐴𝐴(𝑥𝑥) = 𝐴𝐴2𝑥𝑥2 + 𝐴𝐴1𝑥𝑥, де 𝐴𝐴1, 𝐴𝐴2 ≠ 𝑂𝑂– 

нульова матриця. Оскільки 𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥) = 2, то зворотний поліном до 𝐴𝐴(𝑥𝑥): 
rev𝐴𝐴(𝑥𝑥) = rev2 𝐴𝐴(𝑥𝑥) = 𝐴𝐴2 + 𝐴𝐴1𝑥𝑥 

є матричним поліномом степеня 1. Звернемо увагу, що зворотний 
поліном ставить коефіцієнти 𝐴𝐴(𝑥𝑥) у зворотному порядку без 
збільшення степеня полінома. Це означає, що 

(rev (rev 𝐴𝐴(𝑥𝑥))) = (rev1 (𝐴𝐴1𝑥𝑥 + 𝐴𝐴2))  = 𝐴𝐴2𝑥𝑥 + 𝐴𝐴1 ≠ 𝐴𝐴(𝑥𝑥). 
З іншого боку, двічі взявши 2-зворотний поліном до полінома 

𝐴𝐴(𝑥𝑥), отримуємо 
(rev2 (rev2 𝐴𝐴(𝑥𝑥))) = rev2(𝐴𝐴1𝑥𝑥 + 𝐴𝐴2) = 𝐴𝐴2𝑥𝑥2 + 𝐴𝐴1𝑥𝑥 = 𝐴𝐴(𝑥𝑥). 

Бачимо, що спочатку 2-зворотний поліном понижує степінь 𝐴𝐴(𝑥𝑥) 
до одиниці, а потім повторне застосування 2-зворотного до rev2 𝐴𝐴 
повертає поліном до 𝐴𝐴(𝑥𝑥), ілюструючи інволютивну властивість, яка 
виконується загалом. 

Якщо розглянути 4-зворотний матричний поліном до 
𝐴𝐴(𝑥𝑥):rev4 𝐴𝐴(𝑥𝑥) = 𝐴𝐴2𝑥𝑥2 + 𝐴𝐴1𝑥𝑥3 ≠ 𝐴𝐴(𝑥𝑥), то одержимо поліном степеня 3. 
Як бачимо, перетворення зворотності поліномної матриці можна 
розглядати як різновид “зміщеної зворотності” коефіцієнтів полінома і 
його степінь може збільшуватися, зменшуватися або залишатися 
незмінним. 

Формування мети дослідження 
Нехай в кільці поліномів 𝐶𝐶 [𝑥𝑥] = �𝑓𝑓(𝑥𝑥) = ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖

𝑝𝑝
𝑖𝑖=0 , 𝑎𝑎𝑖𝑖 ∈ 𝐶𝐶� 

введена інволюція одним із таких можливих способів [9]: 
(𝛼𝛼)  �∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖

𝑝𝑝
𝑖𝑖=0 �

𝛻𝛻
= ∑ 𝑎̄𝑎𝑖𝑖(−𝑥𝑥)𝑖𝑖 ,𝑝𝑝

𝑖𝑖=0  
(𝛽𝛽)  �∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖

𝑝𝑝
𝑖𝑖=0 �

𝛻𝛻
= ∑ 𝑎𝑎𝑖𝑖(−𝑥𝑥)𝑖𝑖 ,𝑝𝑝

𝑖𝑖=0  
(𝛾𝛾)  �∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖

𝑝𝑝
𝑖𝑖=0 �

𝛻𝛻
= ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖

𝑝𝑝
𝑖𝑖=0 . 

На кільце матриць 𝑀𝑀𝑛𝑛(𝐶𝐶 [𝑥𝑥]) інволюцію  перенесено так: 
𝐴𝐴(𝑥𝑥)𝛻𝛻 = �𝑎𝑎𝑖𝑖𝑖𝑖 (𝑥𝑥)�

𝛻𝛻
= �𝑎𝑎𝑗𝑗𝑗𝑗 (𝑥𝑥)𝛻𝛻�. 

∇

∇
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Матрицю 𝐴𝐴(𝑥𝑥) називатимемо 𝛻𝛻 – симетричною, якщо  
𝐴𝐴(𝑥𝑥) = 𝐴𝐴(𝑥𝑥)𝛻𝛻.  

У пропонованій роботі досліджуємо факторизації 𝛻𝛻-симетричної 
матриці 𝐴𝐴(𝑥𝑥) з кільця 𝑀𝑀𝑛𝑛(𝐶𝐶 [𝑥𝑥]) вигляду 

𝐴𝐴(𝑥𝑥) = 𝐵𝐵(𝑥𝑥)𝐶𝐶(𝑥𝑥)𝐵𝐵(𝑥𝑥)𝛻𝛻 ,   (4) 
де 𝐵𝐵(𝑥𝑥) –сингулярний множник, 𝐶𝐶(𝑥𝑥) = 𝐶𝐶(𝑥𝑥)𝛻𝛻 – деяка неособлива 
матриця, які у випадку 𝐶𝐶(𝑥𝑥) = 𝐶𝐶 охоплюють факторизації із робіт [9].  

Метою даної роботи є отримання умов факторизацій 𝛻𝛻-
симетричних поліномних матриць із сингулярним множником із 
наперед заданою формою Сміта і системою нескінченних елементарних 
дільників над кільцем з інволюцією. 

Інструментом одержання факторизацій 𝛻𝛻-симетричних 
регулярних матриць є перетворення зворотного матричного полінома, 
яке дозволяє перенести результати про один клас факторизованих 
матричних поліномів на інший клас факторизованих матриць. 

Основним результатом цього дослідженняє встановлена 
відповідність між у факторизаціями 𝛻𝛻-симетричних регулярних 
поліномних матриць та 𝛻𝛻-симетричних оборотних поліномних матриць, 
яка здійснена з використанням понять зворотного та 𝑗𝑗-зворотного 
матричного поліномів, їх властивостей та системи нескінченних 
елементарних дільників. 

Виклад нових результатів дослідження 
Нехай 𝑆𝑆𝐴𝐴(𝑥𝑥) – канонічна форма Сміта поліноміальної матриці 

𝐴𝐴(𝑥𝑥) ∈ 𝑀𝑀𝑛𝑛(𝐶𝐶[𝑥𝑥]): 
𝑆𝑆𝐴𝐴(𝑥𝑥) = 𝑈𝑈(𝑥𝑥)𝐴𝐴(𝑥𝑥)𝑉𝑉(𝑥𝑥) = diag(𝜀𝜀1(𝑥𝑥), 𝜀𝜀2(𝑥𝑥), … , 𝜀𝜀𝑛𝑛(𝑥𝑥)),  (5) 

де матриці 𝑈𝑈(𝑥𝑥),𝑉𝑉(𝑥𝑥) ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐶𝐶[𝑥𝑥]), rang 𝐴𝐴(𝑥𝑥) = 𝑛𝑛 і 𝜀𝜀1(𝑥𝑥)| … |𝜀𝜀𝑛𝑛(𝑥𝑥)– 
інваріантні множники (або інваріантні поліноми). 

Якщо кожний з інваріантних поліномів 𝜀𝜀𝑖𝑖(𝑥𝑥) зобразити у вигляді 
добутку незвідних множників 

𝜀𝜀𝑖𝑖(𝑥𝑥) = (𝑥𝑥 − 𝜆𝜆1)𝛼𝛼і1 (𝑥𝑥 − 𝜆𝜆2)𝛼𝛼і2 ⋯ (𝑥𝑥 − 𝜆𝜆𝑡𝑡)𝛼𝛼і𝑡𝑡 ,    і = 1, 𝑛𝑛,  (6) 
де 0 ≤ 𝛼𝛼1𝑘𝑘 ≤ 𝛼𝛼2𝑘𝑘 ≤ ⋯ ≤ 𝛼𝛼𝑛𝑛𝑛𝑛 , 𝑘𝑘 = 1, 𝑡𝑡𝜆𝜆𝑘𝑘 ≠ 𝜆𝜆𝑙𝑙  для 𝑘𝑘 ≠ 𝑙𝑙, тоді множники 
(𝑥𝑥 − 𝜆𝜆𝑗𝑗 )𝛼𝛼і𝑗𝑗  з 𝛼𝛼𝑖𝑖𝑖𝑖 > 0 називають скінченними елементарними дільниками 
𝐴𝐴(𝑥𝑥). Нескінченними елементарними дільниками (н.е.д.) 𝐴𝐴(𝑥𝑥) 
називають скінченні елементарні дільники вигляду 𝑥𝑥𝑘𝑘𝑠𝑠(𝑘𝑘𝑠𝑠 > 0) 
зворотного полінома rev 𝐴𝐴(𝑥𝑥). 

Позначимо через 𝜇𝜇(𝐴𝐴) – суму степенів усіх інваріантних 
поліномів форми Сміта (5), тобто 

𝜇𝜇(𝐴𝐴) = ∑ 𝑑𝑑𝑑𝑑𝑑𝑑   [𝜀𝜀𝑖𝑖(𝑥𝑥)𝑛𝑛
𝑖𝑖=0 ], 

і через 𝜈𝜈(𝐴𝐴) – суму степенів усіх нескінченних елементарних 
дільників𝐴𝐴(𝑥𝑥). Надалі, числа 𝜇𝜇(𝐴𝐴) і 𝜈𝜈(𝐴𝐴) назвемо відповідно 
скінченним і нескінченним степенем матриці 𝐴𝐴(𝑥𝑥). 

Зазначимо, що існує ряд інших еквівалентних способів 
визначення числа 𝜇𝜇(𝐴𝐴), а саме, яксуми степенів усіх скінченних 
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елементарних дільників 𝐴𝐴(𝑥𝑥) або як суми алгебричних кратностей усіх 
скінченних власних значень 𝐴𝐴(𝑥𝑥). Якщо 𝐴𝐴(𝑥𝑥) – регулярний матричний 
поліном, то скінченний степінь 𝐴𝐴(𝑥𝑥) дорівнює 𝜇𝜇(𝐴𝐴) = 𝑑𝑑𝑑𝑑𝑑𝑑   (𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴 (𝑥𝑥)) 
і нескінченний степінь 𝐴𝐴(𝑥𝑥) – кратності нульового кореня у поліномі 
𝑑𝑑𝑑𝑑𝑑𝑑   (rev𝐴𝐴). 

Твердження 1. Нехай 𝐴𝐴(𝑥𝑥) – регулярний 𝑛𝑛 × 𝑛𝑛 матричний 
поліном, 𝑗𝑗 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥).Тоді 𝜇𝜇(𝐴𝐴) + 𝜈𝜈(𝐴𝐴) = 𝑗𝑗𝑗𝑗. 

Доведення. Нехай у формі Сміта скінченний степінь 𝜇𝜇(𝐴𝐴) 
дорівнює 𝛼𝛼 = 𝑑𝑑𝑑𝑑𝑑𝑑   (𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴 (𝑥𝑥)), а звідси 𝛼𝛼 ≤ 𝑗𝑗𝑗𝑗. З іншого боку, на 
підставі означення нескінченних елементарних дільників і факту, що 
rev𝑗𝑗 𝐴𝐴(𝑥𝑥) також є регулярним матричним поліномом, одержуємо, що 
його нескінченний степінь 𝜈𝜈(𝐴𝐴) дорівнює кратності множника 𝑥𝑥у 
поліномі det (rev𝑗𝑗 𝐴𝐴(𝑥𝑥)). Справді, нехай 

𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴 (𝑥𝑥) = 𝑎𝑎0𝑥𝑥𝛼𝛼 + 𝑎𝑎1𝑥𝑥𝛼𝛼−1 + ⋯+ 𝑎𝑎𝛼𝛼−1𝑥𝑥 + 𝑎𝑎𝛼𝛼 ,    (𝑎𝑎0 ≠ 0). 
За означенням 𝑗𝑗-зворотного полінома знаходимо 
𝑑𝑑𝑑𝑑𝑑𝑑   (rev𝑗𝑗 𝐴𝐴(𝑥𝑥)) = 𝑑𝑑𝑑𝑑𝑑𝑑   [𝑥𝑥𝑗𝑗 𝐴𝐴(1 𝑥𝑥⁄ )] = 𝑥𝑥𝑗𝑗𝑗𝑗 𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴 (1 𝑥𝑥⁄ ) = 

= 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑎𝑎0𝑥𝑥−𝛼𝛼 + 𝑎𝑎1𝑥𝑥−(𝛼𝛼−1) + ⋯+ 𝑎𝑎𝛼𝛼−1𝑥𝑥−1 + 𝑎𝑎𝛼𝛼) = 
= 𝑥𝑥𝑗𝑗𝑗𝑗 −𝛼𝛼(𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + ⋯+ 𝑎𝑎𝛼𝛼−1𝑥𝑥𝛼𝛼−1 + 𝑎𝑎𝛼𝛼𝑥𝑥𝛼𝛼)).   (7) 
Оскільки 𝑎𝑎0 ≠ 0, то 𝜈𝜈(𝐴𝐴) = 𝑗𝑗𝑗𝑗 − 𝛼𝛼. Звідси 𝜇𝜇(𝐴𝐴) + 𝜈𝜈(𝐴𝐴) = 𝛼𝛼 +

(𝑗𝑗𝑗𝑗 − 𝛼𝛼) = 𝑗𝑗𝑗𝑗. 
Твердження доведено. 
Наслідок 1. 𝑑𝑑𝑑𝑑𝑑𝑑   (rev𝑗𝑗 𝐴𝐴(𝑥𝑥)) = 𝑥𝑥𝜈𝜈(𝐴𝐴)rev𝑗𝑗 (𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴 (𝑥𝑥)). 
Доведення випливає з рівності (7). 
Твердження 2 ([5]). Для відповідних підматриць 𝑘𝑘-го порядку 

𝐴𝐴𝑘𝑘(𝑥𝑥) і rev 𝐴𝐴𝑘𝑘(𝑥𝑥) матриць 𝐴𝐴(𝑥𝑥) і rev 𝐴𝐴(𝑥𝑥) справджується рівність  
))((detrev))(rev(det xAxxA k

s
k

k= ,     0 ≤ 𝑠𝑠𝑘𝑘 ≤ 𝑚𝑚𝑚𝑚. 
Твердження 3. Нехай інваріантні поліном 𝜀𝜀1(𝑥𝑥), 𝜀𝜀2(𝑥𝑥), … , 𝜀𝜀𝑛𝑛(𝑥𝑥) 

у формі Сміта 𝑆𝑆𝐴𝐴(𝑥𝑥) поліномної матриці 𝐴𝐴(𝑥𝑥) мають вигляд (6), де 
корені 𝜆𝜆𝑘𝑘 , 𝑘𝑘 = 1, 𝑡𝑡 відмінні від нуля. Тоді інваріантні поліноми 
𝜀𝜀1̃(𝑥𝑥), 𝜀𝜀2̃(𝑥𝑥), … , 𝜀𝜀𝑛̃𝑛(𝑥𝑥) матричного полінома rev𝐴𝐴(𝑥𝑥) зворотного до 
матриці 𝐴𝐴(𝑥𝑥) дорівнють 

𝜀𝜀𝑖̃𝑖(𝑥𝑥) = 𝑥𝑥𝑘𝑘𝑖𝑖 �𝑥𝑥 − 1
𝜆𝜆1
�
𝛼𝛼і1
�𝑥𝑥 − 1

𝜆𝜆2
�
𝛼𝛼і2
⋯�𝑥𝑥 − 1

𝜆𝜆𝑡𝑡
�
𝛼𝛼і𝑡𝑡

,   (8) 

де 0 ≤ 𝛼𝛼1𝑘𝑘 ≤ 𝛼𝛼2𝑘𝑘 ≤ ⋯ ≤ 𝛼𝛼𝑛𝑛𝑛𝑛 , 𝑘𝑘 = 1, 𝑡𝑡,  𝜆𝜆𝑘𝑘 ≠ 𝜆𝜆𝑙𝑙  для 𝑘𝑘 ≠ 𝑙𝑙, 0 ≤ 𝑘𝑘1 ≤ 𝑘𝑘2 ≤
⋯ ≤ 𝑘𝑘𝑛𝑛 , і = 1,𝑛𝑛. 

Доведення. Відомо [1], що інваріантні поліноми 𝜀𝜀𝑖𝑖(𝑥𝑥) 
визначаються через найбільші спільні дільники мінорів матриці 𝐴𝐴(𝑥𝑥), 
тому враховуючи твердження 1-2 і наслідок 1, одержуємо результат (8). 

Твердження доведено. 
Враховуючи твердження 3, отримуємо теорему про зв’язок форм 

Сміта матриць 𝐴𝐴(𝑥𝑥) і rev𝐴𝐴(𝑥𝑥). 
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Твердження 4. Якщо форма Сміта поліномної матриці 𝐴𝐴(𝑥𝑥) має 
вигляд (5) 𝑆𝑆𝐴𝐴(𝑥𝑥) = 𝑈𝑈(𝑥𝑥)𝐴𝐴(𝑥𝑥)𝑉𝑉(𝑥𝑥) = diag(𝜀𝜀1(𝑥𝑥), 𝜀𝜀2(𝑥𝑥), … , 𝜀𝜀𝑛𝑛(𝑥𝑥)), де 
𝜀𝜀𝑖𝑖(0) ≠ 0, і = 1,𝑛𝑛, то формою Сміта матриці rev𝐴𝐴(𝑥𝑥)зворотної до 𝐴𝐴(𝑥𝑥)є 
матриця 

𝑆𝑆rev𝐴𝐴(𝑥𝑥) = 𝑃𝑃(𝑥𝑥)rev𝐴𝐴(𝑥𝑥)𝑄𝑄(𝑥𝑥) = diag(𝑥𝑥𝑘𝑘1 rev𝜀𝜀1(𝑥𝑥),  
𝑥𝑥𝑘𝑘2 rev𝜀𝜀2(𝑥𝑥), … , 𝑥𝑥𝑘𝑘𝑛𝑛 rev 𝜀𝜀𝑛𝑛(𝑥𝑥)),                              (9) 

де 0 ≤ 𝑘𝑘1 ≤ 𝑘𝑘2 ≤ ⋯ ≤ 𝑘𝑘𝑛𝑛 , 𝑘𝑘1, 𝑘𝑘2, … ,𝑘𝑘𝑛𝑛  – кратності н.е.д. матриці 𝐴𝐴(𝑥𝑥). 
Зауважимо, що в формі Сміта 𝑆𝑆rev𝐴𝐴(𝑥𝑥) (9) кожний rev𝜀𝜀𝑖𝑖(𝑥𝑥) 

зворотний до 𝜀𝜀𝑖𝑖(𝑥𝑥) береться відносно 𝑑𝑑𝑑𝑑𝑑𝑑   𝜀𝜀𝑖𝑖(𝑥𝑥). 
Сформулюємо властивості зворотного матричного полінома. 
Твердження 5. Нехай 𝐴𝐴(𝑥𝑥) – ненульовий матричний поліном і 

𝑗𝑗 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥).Тоді: 
1) 𝑑𝑑𝑑𝑑𝑑𝑑   (rev𝐴𝐴(𝑥𝑥)) ≤ 𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴 (𝑥𝑥) і deg (rev𝑗𝑗 𝐴𝐴(𝑥𝑥)) ≤ 𝑗𝑗, причому 

рівність виконується тоді і тільки тоді, коли 𝐴𝐴(0) ≠ 𝑂𝑂; 
2) (rev (rev 𝐴𝐴(𝑥𝑥))) = 𝐴𝐴(𝑥𝑥)     ⇔     𝐴𝐴(0) ≠ 𝑂𝑂; 
3) rev𝑗𝑗 (rev𝑗𝑗 𝐴𝐴(𝑥𝑥)) = 𝐴𝐴(𝑥𝑥); 
4) rev𝑗𝑗 𝐴𝐴(𝑥𝑥) = 𝑥𝑥𝑗𝑗−𝑚𝑚(rev𝐴𝐴(𝑥𝑥)), де 𝑚𝑚 = 𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥). 
Доведення. Дані властивості випливають з рівності (3) означення 

𝑗𝑗-зворотного матричного полінома. 
Ще один результат, який буде потрібен, це мультиплікативна 

властивість зворотних скалярних поліномів.  
Твердження 6. Нехай 𝑓𝑓(𝑥𝑥)і 𝑔𝑔(𝑥𝑥) – скалярні поліноми, причому 

𝑗𝑗 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑   𝑓𝑓(𝑥𝑥), 𝑙𝑙 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑   𝑔𝑔(𝑥𝑥). Тоді rev(𝑗𝑗+𝑙𝑙)(𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)) = rev𝑗𝑗 𝑓𝑓(𝑥𝑥) ⋅
rev𝑙𝑙𝑔𝑔(𝑥𝑥). 

Доведення випливає безпосередньо з означення зворотного 
полінома, тому його опускаємо. 

Наслідок 2. Якщо 𝑗𝑗 = 𝑑𝑑𝑑𝑑𝑑𝑑   𝑓𝑓(𝑥𝑥), 𝑙𝑙 = 𝑑𝑑𝑑𝑑𝑑𝑑   𝑔𝑔(𝑥𝑥), то 
rev(𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)) = rev𝑓𝑓(𝑥𝑥) ⋅ rev𝑔𝑔(𝑥𝑥). 

Зазначимо, що для матричних поліномів аналог твердження 6 
вимагає додаткових умов, оскільки добуток двох ненульових матриць 
може бути нульовою матрицею.  

Твердження 7 ([5]). Якщо для матричного полінома 𝐴𝐴(𝑥𝑥) з (1) 
має місце розклад (2), де 𝐵𝐵(𝑥𝑥) – деякий сингулярний матричний 
поліном, то rev𝐴𝐴(𝑥𝑥) = rev𝐵𝐵(𝑥𝑥)rev𝐶𝐶(𝑥𝑥) тоді і тільки тоді, коли  

𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥) = 𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) + 𝑑𝑑𝑑𝑑𝑑𝑑   𝐶𝐶(𝑥𝑥). 
Надалі цю умову назвемо умовою рівності суми степенів 

факторизованих множників степеню факторизованої матриці. 
У роботі [6] досліджувалось питання про виділення сингулярних 

дільників із неособливого сингулярного матричного полінома. Відомо, 
що необхідною і достатньою умовою для того, щоб 𝐴𝐴(𝑥𝑥) = 𝐵𝐵(𝑥𝑥)𝐶𝐶(𝑥𝑥), 
де 𝐵𝐵(𝑥𝑥) – сингулярний матричний поліном степеня 𝑟𝑟 з формою Сміта 
𝛷𝛷(𝑥𝑥) = diag (𝜙𝜙1(𝑥𝑥), . . . ,𝜙𝜙𝑛𝑛(𝑥𝑥)) і системою н.е.д. 𝑥𝑥𝑙𝑙1 , 𝑥𝑥𝑙𝑙2 , . . . , 𝑥𝑥𝑙𝑙𝑛𝑛 , 
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0 ≤ 𝑙𝑙1 ≤. . .≤ 𝑙𝑙𝑛𝑛 , ∑ 𝑙𝑙𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 𝑟𝑟𝑟𝑟 − ∑ 𝑑𝑑𝑑𝑑𝑑𝑑  𝜙𝜙𝑖𝑖(𝑥𝑥)𝑛𝑛

𝑖𝑖=1 , причому  
𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥) = 𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) + 𝑑𝑑𝑑𝑑𝑑𝑑   𝐶𝐶(𝑥𝑥), є умова 

𝑑𝑑𝑑𝑑𝑑𝑑  𝑀𝑀𝑉𝑉(𝛷𝛷� )𝑃𝑃(𝑥𝑥)||𝐸𝐸,𝐸𝐸𝐸𝐸 ,...,𝐸𝐸𝑥𝑥𝑟𝑟−1||
(𝛷𝛷�) ≠ 0,   (10) 

де 𝛷𝛷�(𝑥𝑥) = diag (𝑥𝑥𝑙𝑙1𝜙𝜙�1(𝑥𝑥), . . . , 𝑥𝑥𝑙𝑙𝑛𝑛 𝜙𝜙�𝑛𝑛(𝑥𝑥)), 𝑃𝑃(𝑥𝑥) – довільна оборотна мат-
риця із співвідношення (9), 𝑉𝑉(𝛷𝛷�) − ядро визначальної матриці 𝑊𝑊(𝛷𝛷�), 
введеної в [10]: 

𝑉𝑉(𝛷𝛷�) =

⎝

⎜
⎛

1 0 … … 0
𝜑𝜑2𝑘𝑘21

(𝜑𝜑2,𝜀𝜀�1)
1 … … 0

⋮ ⋮ ⋮ ⋱ ⋮
𝜑𝜑𝑛𝑛𝑘𝑘𝑛𝑛1
(𝜑𝜑𝑛𝑛 ,𝜀𝜀�1)

𝜑𝜑𝑛𝑛𝑘𝑘𝑛𝑛2
(𝜑𝜑𝑛𝑛 ,𝜀𝜀�2)

… 𝜑𝜑𝑛𝑛𝑘𝑘𝑛𝑛𝑛𝑛 −1
(𝜑𝜑𝑛𝑛 ,𝜀𝜀�𝑛𝑛−1)

1⎠

⎟
⎞

,  (11) 

у якій 𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑥𝑥𝑙𝑙𝑖𝑖𝜙𝜙�𝑖𝑖(𝑥𝑥),(𝜑𝜑𝑖𝑖 , 𝜀𝜀𝑗̃𝑗 ) – найбільший спільний дільник поліно-
мів 𝜑𝜑𝑖𝑖(𝑥𝑥) і 𝜀𝜀𝑗̃𝑗 (𝑥𝑥), 𝑖𝑖, 𝑗𝑗 = 1,  𝑛𝑛, 𝑖𝑖 ≥ 𝑗𝑗, 

𝑘𝑘𝑖𝑖𝑖𝑖 = �
0,          якщо (𝜑𝜑𝑖𝑖 , 𝜀𝜀𝑗̃𝑗 ) = 𝜑𝜑𝑗𝑗 ,

𝑘𝑘𝑖𝑖𝑗𝑗ℎ𝑖𝑖𝑖𝑖
𝑥𝑥ℎ𝑖𝑖𝑖𝑖 + ⋯+ 𝑘𝑘𝑖𝑖𝑗𝑗1𝑥𝑥 + 𝑘𝑘𝑖𝑖𝑗𝑗0 ,      якщо  (𝜑𝜑𝑖𝑖 , 𝜀𝜀𝑗̃𝑗 ) ≠ 𝜑𝜑𝑗𝑗 ,

� 

ℎ𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑑𝑑 (𝜑𝜑𝑖𝑖 ,𝜀𝜀�𝑗𝑗 )
𝜑𝜑𝑗𝑗

− 1, 𝑖𝑖 = 2,  𝑛𝑛, 𝑗𝑗 = 1, 𝑛𝑛 − 1, 𝑖𝑖 > 𝑗𝑗, 𝑘𝑘𝑖𝑖𝑗𝑗𝑠𝑠  – попарно різні 

змінні величини, які приєднуються до поля 𝐶𝐶, 𝑠𝑠 = 0,  1, … , ℎ𝑖𝑖𝑖𝑖 . 
Умова (10) є необхідною умовою факторизації (4), але не достат-

ньою. Наступний результат встановлює необхідні і достатні умови іс-
нування факторизації неособливої поліномної матриці із сингулярним 
множником із наперед заданою формою Сміта і системою н.е.д. 

Теорема 1. Нехай 𝛷𝛷(𝑥𝑥) = diag (𝜙𝜙1(𝑥𝑥), … ,𝜙𝜙𝑛𝑛(𝑥𝑥)) – d- матриця [1], 
яка є дільником форми Сміта 𝑆𝑆А(𝑥𝑥) матричного полінома 𝐴𝐴(𝑥𝑥). Для 𝛻𝛻-
симетричної сингулярної матриці 𝐴𝐴(𝑥𝑥) існує факторизація (4), в якій 
𝐵𝐵(𝑥𝑥)– сингулярний матричний поліном степеня 𝑟𝑟 з формою Сміта 𝛷𝛷(𝑥𝑥) 
і системою н.е.д. 𝑥𝑥𝑙𝑙1 , 𝑥𝑥𝑙𝑙2 , . . . , 𝑥𝑥𝑙𝑙𝑛𝑛 , 0 ≤ 𝑙𝑙1 ≤. . .≤ 𝑙𝑙𝑛𝑛 , ∑ 𝑙𝑙𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 𝑟𝑟𝑟𝑟 −
∑ 𝑑𝑑𝑑𝑑𝑑𝑑  𝜙𝜙𝑖𝑖(𝑥𝑥)𝑛𝑛
𝑖𝑖=1 , а 𝐶𝐶(𝑥𝑥) = 𝐶𝐶(𝑥𝑥)𝛻𝛻 − деяка неособлива матриця, причому 

𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥) = 2𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) + 𝑑𝑑𝑑𝑑𝑑𝑑   𝐶𝐶(𝑥𝑥), тоді і тільки тоді, коли 𝛻𝛻-
симетрична матриця  

𝑉𝑉(𝛷𝛷�)𝑃𝑃(𝑥𝑥)(rev𝐴𝐴(𝑥𝑥))𝑃𝑃(𝑥𝑥)𝛻𝛻𝑉𝑉(𝛷𝛷�)𝛻𝛻   (12) 
ділиться одночасно зліва на 𝛷𝛷�(𝑥𝑥) і справа на 𝛷𝛷�(𝑥𝑥)𝛻𝛻 при деяких допус-
тимих значеннях параметрів матриці 𝑉𝑉(𝛷𝛷�), для яких виконується умова 
(10), де 𝛷𝛷�(𝑥𝑥) = diag (𝑥𝑥𝑙𝑙1𝜙𝜙�1(𝑥𝑥), . . . , 𝑥𝑥𝑙𝑙𝑛𝑛 𝜙𝜙�𝑛𝑛(𝑥𝑥)), 𝑃𝑃(𝑥𝑥) – довільна оборотна 
матриця із співвідношення (9), 𝑉𝑉(𝛷𝛷�) – ядро визначальної матриці 𝑊𝑊(𝛷𝛷�) 
із (11). 

Доведення. Необхідність. Нехай для сингулярної матриці 𝐴𝐴(𝑥𝑥) іс-
нує факторизація (4), причому 𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥) = 2𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) + 𝑑𝑑𝑑𝑑𝑑𝑑   𝐶𝐶(𝑥𝑥).  

Розглянемо зворотний поліном rev 𝐴𝐴(𝑥𝑥) до 𝐴𝐴(𝑥𝑥). Тоді з рівності 
(4), за умови рівності степенів факторизованих множників, одержимо 
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факторизацію регулярної симетричної матриці rev 𝐴𝐴(𝑥𝑥), у якій множ-
ник rev 𝐵𝐵(𝑥𝑥) зворотний до 𝐵𝐵(𝑥𝑥) є регулярною матрицею степеня 𝑟𝑟 з 
формою Сміта 𝛷𝛷�(𝑥𝑥). Тому згідно з наведеним вище результатом про 
виділення сингулярного множника і теоремою 1 роботи [11] викону-
ються умови (10) і (12). 

Достатність. При виконанні умов (10) і (12) існує факторизація 
𝛻𝛻-симетричної матриці rev 𝐴𝐴(𝑥𝑥) зворотної до 𝐴𝐴(𝑥𝑥), у якій множник 
rev 𝐵𝐵(𝑥𝑥) є регулярним степеня 𝑟𝑟 з формою Сміта 𝛷𝛷�(𝑥𝑥). Тоді, розгляну-
вши зворотний до rev 𝐴𝐴(𝑥𝑥) матричний поліном, отримуємо факториза-
цію (4) матриці 𝐴𝐴(𝑥𝑥) із сингулярним множником 𝐵𝐵(𝑥𝑥), зворотним до 
rev 𝐵𝐵(𝑥𝑥), де 𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) = 𝑟𝑟, 𝑆𝑆𝐵𝐵(𝑥𝑥) = 𝛷𝛷(𝑥𝑥) і системою н.е.д. 
𝑥𝑥𝑙𝑙1 , 𝑥𝑥𝑙𝑙2 , . . . , 𝑥𝑥𝑙𝑙𝑛𝑛 .  

Теорему доведено. 
Припустимо, що форму Сміта матриці 𝐴𝐴(𝑥𝑥) можна зобразити у 

вигляді  
𝑆𝑆А(𝑥𝑥) = 𝛷𝛷(𝑥𝑥)𝐼𝐼(𝑥𝑥)𝛷𝛷(𝑥𝑥)𝛻𝛻 ,   (13) 

де 𝛷𝛷(𝑥𝑥),  𝐼𝐼(𝑥𝑥)– d- матриці. 
Зазначимо, що розклад 𝛻𝛻-симетричної матриці 𝐴𝐴(𝑥𝑥), в якому 𝐵𝐵(𝑥𝑥) 

– регулярний або сингулярний матричний поліном із формою Сміта 
𝛷𝛷(𝑥𝑥), а матриця 𝐶𝐶(𝑥𝑥) має форму Сміта 𝐼𝐼(𝑥𝑥), називають допустимою 
факторизацією матриці 𝐴𝐴(𝑥𝑥), паралельною факторизації (13) її форми 
Сміта 𝑆𝑆А(𝑥𝑥). Інакше кажучи, факторизація (4) допустима тоді, якщо 
форма Сміта матричного полінома 𝐴𝐴(𝑥𝑥) дорівнює добутку форм Сміта 
його співмножників. Якщо у факторизації (4) матриці 𝐴𝐴(𝑥𝑥) відсутня 
паралельна факторизація її форми Сміта (13), то таку факторизацію ма-
триці називають недопустимою. 

Теорема 2. Для 𝛻𝛻-симетричної сингулярної матриці 𝐴𝐴(𝑥𝑥) існує 
допустима факторизація (4), в якій 𝐵𝐵(𝑥𝑥) – сингулярний матричний по-
ліном степеня 𝑟𝑟 з формою Сміта 𝛷𝛷(𝑥𝑥) і системою н.е.д. 
𝑥𝑥𝑙𝑙1 , 𝑥𝑥𝑙𝑙2 , . . . , 𝑥𝑥𝑙𝑙𝑛𝑛 , 0 ≤ 𝑙𝑙1 ≤. . .≤ 𝑙𝑙𝑛𝑛 , ∑ 𝑙𝑙𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 𝑟𝑟𝑟𝑟 − ∑ 𝑑𝑑𝑑𝑑𝑑𝑑  𝜙𝜙𝑖𝑖(𝑥𝑥)𝑛𝑛
𝑖𝑖=1 , а 

𝐶𝐶(𝑥𝑥) = 𝐶𝐶(𝑥𝑥)𝛻𝛻 – деяка неособлива матриця з формою Сміта 𝐼𝐼(𝑥𝑥), при-
чому 𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥) = 2𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) + 𝑑𝑑𝑑𝑑𝑑𝑑   𝐶𝐶(𝑥𝑥), тоді і тільки тоді, коли 

𝑑𝑑𝑑𝑑𝑑𝑑  𝑀𝑀𝑃𝑃(𝑥𝑥)||𝐸𝐸,𝐸𝐸𝐸𝐸 ,...,𝐸𝐸𝑥𝑥𝑟𝑟−1||
(𝛷𝛷�) ≠ 0, 

де 𝛷𝛷�(𝑥𝑥) = diag (𝑥𝑥𝑙𝑙1𝜙𝜙�1(𝑥𝑥), . . . , 𝑥𝑥𝑙𝑙𝑛𝑛𝜙𝜙�𝑛𝑛(𝑥𝑥)), 𝑃𝑃(𝑥𝑥) – довільна оборотна мат-
риця із рівності (9). Для кожного фіксованого розкладу (13) така допус-
тима факторизація (4) єдина. 

Доведення. Випливає з теореми 1 та теореми 1 роботи [11]. 
Наслідок  3. Факторизація (4) 𝛻𝛻-симетричного сингулярного по-

лінома 𝐴𝐴(𝑥𝑥) з умовою𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥) = 2𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) + 𝑑𝑑𝑑𝑑𝑑𝑑   𝐶𝐶(𝑥𝑥) існує тоді і 
тільки тоді, коли існує факторизація матриці rev 𝐴𝐴(𝑥𝑥) зворотної до 
𝐴𝐴(𝑥𝑥): 

rev 𝐴𝐴(𝑥𝑥) = rev 𝐵𝐵(𝑥𝑥)𝐶𝐶1(𝑥𝑥)(rev 𝐵𝐵(𝑥𝑥)𝛻𝛻 ,  (14) 
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де 𝐶𝐶1(𝑥𝑥) = ±rev С(𝑥𝑥). 
Опишемо вигляд 𝛻𝛻-симетричної матриці 𝐶𝐶(𝑥𝑥) у формулі фактори-

зації (4) за кожної з можливих інволюцій у кільці 𝐶𝐶[𝑥𝑥], введених у ро-
боті [9]. 

Твердження8. Нехай має місце факторизація (14) матричного по-
лінома rev 𝐴𝐴(𝑥𝑥) зворотного до 𝐴𝐴(𝑥𝑥). Тоді матриця 𝐶𝐶(𝑥𝑥) у факторизації 
(4) має вигляд: 

𝐶𝐶(𝑥𝑥) = −rev 𝐶𝐶1(𝑥𝑥) за інволюцій (𝛼𝛼), (𝛽𝛽), якщо 𝑟𝑟 – непарне число; 
𝐶𝐶(𝑥𝑥) = rev 𝐶𝐶1(𝑥𝑥) за інволюцій (𝛼𝛼), (𝛽𝛽), якщо 𝑟𝑟 – парне число і за 

інволюції (𝛾𝛾). 
Розглянемо факторизації 𝛻𝛻-симетричної матриці 𝐴𝐴(𝑥𝑥), характери-

стичний поліном 𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴 (𝑥𝑥) яких є одиницею кільця 𝐶𝐶[𝑥𝑥]. Такі оборотні 
над 𝐶𝐶[𝑥𝑥] матриці 𝐴𝐴(𝑥𝑥) є сингулярними. Легко бачити, що rev 𝐴𝐴(𝑥𝑥) зво-
ротна до матриці 𝐴𝐴(𝑥𝑥) ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐶𝐶[𝑥𝑥]) є регулярною матрицею, характе-
ристичний поліном якої 𝑑𝑑𝑑𝑑𝑑𝑑   (rev𝐴𝐴(𝑥𝑥)) = 𝑥𝑥𝑚𝑚𝑚𝑚 . 

Наступний результат встановлює необхідні і достатні умови існу-
вання факторизації 𝛻𝛻-симетричної оборотної над 𝐶𝐶[𝑥𝑥] матриці 𝐴𝐴(𝑥𝑥), в 
якій 𝐵𝐵(𝑥𝑥) ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐶𝐶[𝑥𝑥]), 𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) = 𝑚𝑚 2⁄ . 

Теорема 3. Для 𝛻𝛻-симетричної оборотної над 𝐶𝐶[𝑥𝑥] матриці 𝐴𝐴(𝑥𝑥) 
існує факторизація (4), в якій 𝐵𝐵(𝑥𝑥) оборотна над 𝐶𝐶[𝑥𝑥] із системою н.е.д. 
𝑥𝑥𝑙𝑙1 , 𝑥𝑥𝑙𝑙2 , . . . , 𝑥𝑥𝑙𝑙𝑛𝑛 , 0 ≤ 𝑙𝑙1 ≤. . .≤ 𝑙𝑙𝑛𝑛 , ∑ 𝑙𝑙𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 𝑚𝑚𝑚𝑚 2⁄ , а 𝐶𝐶(𝑥𝑥) = 𝐶𝐶 − неособ-
лива діагональна матриця, тоді і тільки тоді, коли 𝛻𝛻-симетрична матри-
ця 𝑉𝑉(𝛷𝛷�)𝑃𝑃(𝑥𝑥)rev𝐴𝐴(𝑥𝑥)𝑃𝑃(𝑥𝑥)𝛻𝛻𝑉𝑉(𝛷𝛷�)𝛻𝛻 ділиться одночасно зліва на 𝛷𝛷�(𝑥𝑥) і 
справа на 𝛷𝛷�(𝑥𝑥)𝛻𝛻 при деяких допустимих значеннях параметрів матриці 
𝑉𝑉(𝛷𝛷�), для яких виконується умова (10), де 𝛷𝛷�(𝑥𝑥) = diag (𝑥𝑥𝑙𝑙1 , . . . , 𝑥𝑥𝑙𝑙𝑛𝑛 ), 
𝑃𝑃(𝑥𝑥) − оборотна матриця з рівності (9), 𝑉𝑉(𝛷𝛷�)– ядро визначальної мат-
риці 𝑊𝑊(𝛷𝛷�) із (11). 

Доведення. Необхідність випливає із теореми 1 і наслідку 3.  
Достатність. Згідно з теоремою 1 [11] існує факторизація регу-

лярного матричного полінома rev𝐴𝐴(𝑥𝑥) зворотного до 𝐴𝐴(𝑥𝑥) 
rev𝐴𝐴(𝑥𝑥) = rev𝐵𝐵1(𝑥𝑥)𝐺𝐺rev𝐵𝐵1(𝑥𝑥)𝛻𝛻 ,    (15) 

де rev𝐵𝐵1(𝑥𝑥) − унітальна матриця степеня 𝑚𝑚 2⁄  з формою Сміта 𝛷𝛷�(𝑥𝑥), а 
𝐺𝐺 = 𝐺𝐺𝛻𝛻 − неособлива матриця. Матриця 𝐺𝐺 є ермітово конгруентною за 
інволюції (𝛼𝛼) (конгруентною за інволюцій (𝛽𝛽), (𝛾𝛾)) до матриці енерції 
𝐼𝐼(𝐺𝐺) = diag {𝐸𝐸𝑘𝑘 , 𝐸𝐸𝑛𝑛−𝑘𝑘}, де 𝑘𝑘 − кількість додатних власних значень ма-
триці 𝐺𝐺, тобто 𝐺𝐺 = 𝑇𝑇𝑇𝑇(𝐺𝐺)𝑇𝑇𝛻𝛻, а 𝑇𝑇 ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐶𝐶). 

Тоді із співвідношення (15) одержуємо факторизацію 
rev𝐴𝐴(𝑥𝑥) = rev𝐵𝐵(𝑥𝑥)𝐶𝐶1rev𝐵𝐵(𝑥𝑥)𝛻𝛻 ,   (16) 

де rev𝐵𝐵(𝑥𝑥) = rev𝐵𝐵1(𝑥𝑥)𝑇𝑇 − регулярна матриця степеня 𝑚𝑚 2⁄  з формою 
Сміта 𝛷𝛷�(𝑥𝑥), 𝐶𝐶1 = 𝐼𝐼(𝐺𝐺). 

Розглянувши поліном зворотний до rev𝐴𝐴(𝑥𝑥), з рівності (16) одер-
жимо факторизацію (4), в якій матриця 𝐵𝐵(𝑥𝑥) зворотна до rev𝐵𝐵(𝑥𝑥) є 
оборотною над 𝐶𝐶[𝑥𝑥] із системою н.е.д. 𝑥𝑥𝑙𝑙1 , 𝑥𝑥𝑙𝑙2 , . . . , 𝑥𝑥𝑙𝑙𝑛𝑛 , а вигляд матри-
ці 𝐶𝐶 = ±𝐶𝐶1 описано у твердженні 8.  
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Теорему доведено. 
З теореми 3 випливає наслідок. 
Наслідок 4. Для 𝛻𝛻-симетричної матриці 𝐴𝐴(𝑥𝑥) ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐶𝐶[𝑥𝑥]) існує 

факторизація (4), в якій 𝐵𝐵(𝑥𝑥) ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐶𝐶[𝑥𝑥]), 𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) = 𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥) 2⁄  
тоді і лише тоді, коли існує факторизація 𝛻𝛻-симетричної матриці 
rev𝐴𝐴(𝑥𝑥) зворотної до 𝐴𝐴(𝑥𝑥). 

Приклад. Нехай задано матрицю  

𝐴𝐴(𝑥𝑥) = �
1 − 𝑥𝑥2 𝑥𝑥2 + √2𝑥𝑥 0
𝑥𝑥2 − √2𝑥𝑥 1 − 𝑥𝑥2 0

0 0 1
� ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐶𝐶[𝑥𝑥]), 𝐴𝐴(𝑥𝑥) = 𝐴𝐴(𝑥𝑥)𝛻𝛻за інво-

люції (𝛽𝛽). 

Розглянемо rev𝐴𝐴(𝑥𝑥) = �
𝑥𝑥2 − 1 1 + √2𝑥𝑥 0

1 − √2𝑥𝑥 𝑥𝑥2 − 1 0
0 0 𝑥𝑥2

� зворотний до 

𝐴𝐴(𝑥𝑥), форма Сміта якого 𝑆𝑆rev𝐴𝐴(𝑥𝑥)(𝑥𝑥) = diag (1, 𝑥𝑥2, 𝑥𝑥4). 
Симетрична матриця rev𝐴𝐴(𝑥𝑥) є регулярною і для неїіснують допус-

тимафакторизація (4) за інволюції (𝛽𝛽), в якій множник rev𝐵𝐵(𝑥𝑥) має фо-
рму Сміта 𝛷𝛷�1(𝑥𝑥) = diag (1, 𝑥𝑥, 𝑥𝑥2): 

rev𝐴𝐴(𝑥𝑥) =

�
𝑥𝑥 + (1 √2⁄ ) 1 √2⁄ 0
−1 √2⁄ 𝑥𝑥 − (1 √2⁄ ) 0

0 0 𝑥𝑥
�  С  �

−𝑥𝑥 + (1 √2⁄ ) − 1 √2⁄ 0
1 √2⁄ −𝑥𝑥 − (1 √2⁄ ) 0

0 0 −х
�. 

і недопустимі факторизації за інволюції (𝛽𝛽), в яких множник rev𝐵𝐵(𝑥𝑥) 
має форму Сміта 𝛷𝛷�2(𝑥𝑥) = diag (1,1, 𝑥𝑥3): 

rev𝐴𝐴(𝑥𝑥) = �
𝑥𝑥 + √2 0 і
−√2 𝑥𝑥 −і

і −і 𝑥𝑥 − √2
�  С  �

−𝑥𝑥 + √2 −√2 і
0 −𝑥𝑥 −і
і −і −𝑥𝑥 − √2

�; 

rev𝐴𝐴(𝑥𝑥) = �
𝑥𝑥 + �(1 + і) √2⁄ � (1 − і) √2⁄ −1
− (1 + і) √2⁄ 𝑥𝑥 − ((1− і) √2⁄ ) 1

−1 1 𝑥𝑥 − і√2

�  С 

 �
−𝑥𝑥 + ((1 + і) √2⁄ ) −(1 + і) √2⁄ −1

(1 − і) √2⁄ −𝑥𝑥 − ((1− і) √2⁄ ) 1
−1 1 −𝑥𝑥 − і√2

�. 

У наведених факторизаціях rev𝐴𝐴(𝑥𝑥) матриця С дорівнює  
С = diag (−1,−1,−1). Побудова таких факторизацій є окремою зада-
чею теорії розкладності поліномних матриць. 

На підставі теореми 3 для 𝛻𝛻-симетричної оборотної над 𝐶𝐶[𝑥𝑥] мат-
риці 𝐴𝐴(𝑥𝑥) існують факторизації за інволюції (𝛽𝛽), в яких множник 𝐵𝐵(𝑥𝑥) 
оборотна над 𝐶𝐶[𝑥𝑥] матриця із системою н.е.д. 1, 𝑥𝑥, 𝑥𝑥2: 
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𝐴𝐴(𝑥𝑥) = �
1 + (1 √2⁄ )𝑥𝑥 𝑥𝑥 √2⁄ 0
−𝑥𝑥 √2⁄ 1 − (1 √2⁄ )𝑥𝑥 0

0 0 1
� �

1 − (1 √2⁄ )𝑥𝑥 𝑥𝑥 √2⁄ 0
−𝑥𝑥 √2⁄ 1 + (1 √2⁄ )𝑥𝑥 0

0 0 1
� 

і факторизації за інволюції (𝛽𝛽), в яких множник 𝐵𝐵(𝑥𝑥) оборотна над 
𝐶𝐶[𝑥𝑥] матриця із системою н.е.д. 1,1, 𝑥𝑥3: 

𝐴𝐴(𝑥𝑥) = �
1 + √2𝑥𝑥 0 і𝑥𝑥
−√2𝑥𝑥 1 −і𝑥𝑥
і𝑥𝑥 −і𝑥𝑥 1 − √2𝑥𝑥

� �
1 − √2𝑥𝑥 √2𝑥𝑥 −і𝑥𝑥

0 1 і𝑥𝑥
−і𝑥𝑥 і𝑥𝑥 1 + √2𝑥𝑥

�; 

𝐴𝐴(𝑥𝑥) = �
1 + �(1 + і) √2⁄ �𝑥𝑥 (1 − і)𝑥𝑥 √2⁄ −𝑥𝑥
− (1 + і)𝑥𝑥 √2⁄ 1 − ((1− і)𝑥𝑥 √2⁄ ) 𝑥𝑥

−𝑥𝑥 𝑥𝑥 1 − і√2𝑥𝑥

�  

�
1 − ((1 + і) √2⁄ )𝑥𝑥 (1 + і)𝑥𝑥 √2⁄ 𝑥𝑥
−(1 − і)𝑥𝑥 √2⁄ 1 + ((1 − і)𝑥𝑥 √2⁄ ) −𝑥𝑥

𝑥𝑥 −𝑥𝑥 1 − і√2𝑥𝑥
�. 

Важливою є задача про факторизацію (4) оборотної над 𝐶𝐶[𝑥𝑥]𝛻𝛻-
симетричної матриці 𝐴𝐴(𝑥𝑥) степеня 𝑚𝑚, в якій 𝐵𝐵(𝑥𝑥) ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐶𝐶[𝑥𝑥]), 
𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) > 𝑚𝑚 2⁄ . У таких факторизаціях умова рівностістепенів фак-
торизованих множників не виконується, тобто 𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥) ≠
𝑑𝑑𝑑𝑑𝑑𝑑  𝐵𝐵(𝑥𝑥) + 𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥)𝛻𝛻, тому скористаємось перетворенням  
𝛻𝛻-зворотного полінома. 

Легко бачити, що якщо матричний поліном 𝐴𝐴(𝑥𝑥) оборотний над 𝐶𝐶[𝑥𝑥], 
то rev𝑗𝑗 𝐴𝐴(𝑥𝑥) – 𝑗𝑗-зворотний до 𝐴𝐴(𝑥𝑥) є регулярним матричним поліномом. 
Якщо ж𝐴𝐴(𝑥𝑥) симетрична матриця, то матриця rev𝑗𝑗 𝐴𝐴(𝑥𝑥) також є  
𝛻𝛻-симетричною матрицею, якщо 𝑗𝑗 – парне число. Надалі, вважатимемо, 
що 𝑗𝑗 – парне число. 

Зважаючи, що на рівність rev𝑗𝑗 𝐴𝐴(𝑥𝑥) = 𝑥𝑥𝑗𝑗−𝑚𝑚 rev𝐴𝐴(𝑥𝑥) (твердження 5, 
власт. 4)), то легко переконатись у справедливості наступного твер-
дження. 

Твердження 9. Нехай форма Сміта 𝑆𝑆rev𝐴𝐴(𝑥𝑥) матричного полінома 
rev𝐴𝐴(𝑥𝑥) зворотного до 𝐴𝐴(𝑥𝑥) має вигляд (9). Тоді форма Сміта 
𝑆𝑆rev𝑗𝑗 𝐴𝐴(𝑥𝑥)(𝑥𝑥) матричного полінома rev𝑗𝑗 𝐴𝐴(𝑥𝑥) отримується за тих самих 
матриць 𝑃𝑃(𝑥𝑥),𝑄𝑄(𝑥𝑥) оборотних над 𝐶𝐶[𝑥𝑥], тобто  

𝑆𝑆rev𝑗𝑗 𝐴𝐴(𝑥𝑥)(𝑥𝑥) = 𝑃𝑃(𝑥𝑥)rev𝑗𝑗 𝐴𝐴(𝑥𝑥)𝑄𝑄(𝑥𝑥). 
Теорема 4. Для 𝛻𝛻-симетричної матриці 𝐴𝐴(𝑥𝑥) ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐶𝐶[𝑥𝑥]) вигляду 

(1) існує факторизація (4), в якій 𝐵𝐵(𝑥𝑥) ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐶𝐶[𝑥𝑥]), 𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) > 𝑚𝑚 2⁄ , 
𝐶𝐶 = 𝐶𝐶𝛻𝛻– неособлива діагональна матриця, тоді і лише тоді, коли існує 
недопустима факторизація матричного полінома rev𝑗𝑗 𝐴𝐴(𝑥𝑥) –  
𝑗𝑗 – у зворотного до 𝐴𝐴(𝑥𝑥), де 𝑗𝑗 = 𝑑𝑑𝑑𝑑𝑑𝑑   (rev 𝐵𝐵(𝑥𝑥)) + 𝑑𝑑𝑑𝑑𝑑𝑑   (rev 𝐵𝐵(𝑥𝑥))𝛻𝛻, 
rev 𝐵𝐵(𝑥𝑥) зворотний до 𝐵𝐵(𝑥𝑥) поліном. 
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Доведення. Необхідність. Нехай для матриці 𝐴𝐴(𝑥𝑥) ∈ 𝐺𝐺𝐿𝐿𝑛𝑛(𝐶𝐶[𝑥𝑥]) 
існує факторизація (4) і 

𝑗𝑗 = 𝑑𝑑𝑑𝑑𝑑𝑑   (rev 𝐵𝐵(𝑥𝑥)) + 𝑑𝑑𝑑𝑑𝑑𝑑   (rev 𝐵𝐵(𝑥𝑥))𝛻𝛻. 
Розглянувши rev𝑗𝑗 𝐴𝐴(𝑥𝑥) 𝑗𝑗-зворотний до 𝐴𝐴(𝑥𝑥), із рівності (4) одер-

жуємо факторизацію регулярного матричного полінома rev𝑗𝑗 𝐴𝐴(𝑥𝑥). 
Доведемо, що отримана факторизація матриці rev𝑗𝑗 𝐴𝐴(𝑥𝑥) не може 

бути допустимою. Припустимо, що існує допустима факторизація для 
rev𝑗𝑗 𝐴𝐴(𝑥𝑥) 
rev𝑗𝑗 𝐴𝐴(𝑥𝑥) = rev𝐵𝐵1(𝑥𝑥)𝐶𝐶1rev𝐵𝐵1(𝑥𝑥)𝛻𝛻,          𝑆𝑆rev𝑗𝑗 𝐴𝐴(𝑥𝑥)(𝑥𝑥) = 𝛷𝛷1(𝑥𝑥)𝐼𝐼𝛷𝛷1(𝑥𝑥)𝛻𝛻,(17) 
де матричний поліном rev𝐵𝐵1(𝑥𝑥) з формою Сміта  𝛷𝛷1(𝑥𝑥),  
𝑑𝑑𝑑𝑑𝑑𝑑  𝛷𝛷1(𝑥𝑥) = 𝑗𝑗𝑗𝑗 2⁄ . Оскільки 𝑆𝑆rev𝑗𝑗 𝐴𝐴(𝑥𝑥)(𝑥𝑥) = 𝐸𝐸𝑥𝑥𝑗𝑗−𝑚𝑚𝑆𝑆rev𝐴𝐴(𝑥𝑥)(𝑥𝑥), то з спів-
відношень (17) можна виділити лівий і правий множники 𝐸𝐸𝑥𝑥(𝑗𝑗−𝑚𝑚) 2⁄  і 
(𝐸𝐸𝑥𝑥(𝑗𝑗−𝑚𝑚) 2⁄ )𝛻𝛻 відповідно 

rev𝐵𝐵1(𝑥𝑥) = 𝐸𝐸𝑥𝑥(𝑗𝑗−𝑚𝑚) 2⁄ rev𝐵𝐵(𝑥𝑥),         𝛷𝛷1(𝑥𝑥) = 𝐸𝐸𝑥𝑥(𝑗𝑗−𝑚𝑚) 2⁄ 𝛷𝛷(𝑥𝑥). 
Звідси, існує допустима факторизація матриці rev𝐴𝐴(𝑥𝑥), в якій ма-

триця rev𝐵𝐵(𝑥𝑥) степеня 𝑚𝑚 2⁄  з формою Сміта 𝛷𝛷(𝑥𝑥). Отримали протиріччя з 
тим, що 𝑑𝑑𝑑𝑑𝑑𝑑   (rev𝐵𝐵(𝑥𝑥)) = 𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) > 𝑚𝑚 2⁄ . 

Достатність. Нехай існує факторизація матричного полінома 
rev𝑗𝑗 𝐴𝐴(𝑥𝑥)𝑗𝑗-узворотного до 𝐴𝐴(𝑥𝑥) 

rev𝑗𝑗 𝐴𝐴(𝑥𝑥) = rev𝐵𝐵(𝑥𝑥)𝐶𝐶1rev𝐵𝐵(𝑥𝑥)𝛻𝛻,   (18) 
причому 𝑑𝑑𝑑𝑑𝑑𝑑   (rev𝑗𝑗 𝐴𝐴(𝑥𝑥)) = 𝑑𝑑𝑑𝑑𝑑𝑑   (rev𝐵𝐵(𝑥𝑥)) + 𝑑𝑑𝑑𝑑𝑑𝑑   (rev𝐵𝐵(𝑥𝑥))𝛻𝛻. 

Розглянувши матричний поліном зворотний до rev𝑗𝑗 𝐴𝐴(𝑥𝑥), з рівнос-
ті (18) одержуємо факторизацію оборотної над 𝐶𝐶[𝑥𝑥] матриці 𝐴𝐴(𝑥𝑥), при-
чому 𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥) < 𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) + 𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥)𝛻𝛻. 

Остання нерівність має місце, оскільки матричні коефіцієнти 
при𝑥𝑥𝑟𝑟−1, . . . , 𝑥𝑥0 полінома rev𝑗𝑗 𝐴𝐴(𝑥𝑥)єнульовими.  

Теорему доведено. 
Висновки 

У статті досліджено факторизацію 𝛻𝛻-симетричних сингулярних ма-
триць над кільцем поліномів з інволюцією. Факторизації таких матриць 
використовують в задачах теорії оптимального керування, диференціаль-
них іграх і в побудові інтегрованих систем класичної механіки [12-13]. 

У термінах системи нескінченних елементарних дільників і понят-
тя зворотного матричного полінома знайдено необхідні і достатні умови 
існування факторизацій 𝛻𝛻-симетричних сингулярних матриць із сингу-
лярним множником наперед заданої форми Сміта і системою нескінчен-
них елементарних дільників над кільцями поліномів з інволюцією. 

Встановлено відповідність між факторизаціями сингулярних і ре-
гулярних 𝛻𝛻-симетричних матриць над кільцями поліномів з інволюці-
єю. Цей зв’язок побудовано з використанням концепції зворотного та 𝑗𝑗-
зворотного матричних поліномів та системи нескінченних елементар-
них дільників. 
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За допомогою понять зворотного й 𝑗𝑗-зворотного матричних полі-
номів, отримано необхідні й достатні умови факторизації оборотних 𝛻𝛻-
симетричних матриць над кільцем поліномів з інволюцією. Факториза-
ції оборотних матриць отримано з обмеженням на степені співмножни-
ків і без додаткових обмежень. 
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In many applied problems, factorization of symmetric polynomial ma-
trices with real and complex coefficients is used to construct synthesized lo-
cally optimal control, to construct integrated systems of classical mechanics, 
in particular, to solve the Euler-Arnold problem of the motion of a multidi-
mensional rigid body, billiards in spaces of constant curvature. 

For 𝛻𝛻-symmetric polynomial matricesover a ring of polynomials with 
involution, conditions for the existence of the factorization  
𝐴𝐴(𝑥𝑥) = 𝐵𝐵(𝑥𝑥)𝐶𝐶(𝑥𝑥)𝐵𝐵(𝑥𝑥)𝛻𝛻 with a singular factor 𝐵𝐵(𝑥𝑥) with a given canonical 
Smith form and a system of infinite elementary divisors are obtained. 

The correspondence between the factorizations of 𝛻𝛻-symmetric singu-
lar polynomial matrices and 𝛻𝛻-symmetric regular polynomial matrices is 
established, which is carried out using the concepts of the reversal and 𝑗𝑗-
reversal matrix polynomials and the system of infinite elementary divisors. 
This correspondence is based on the properties of the transformations of the 
reversal and 𝑗𝑗-reversal of matrix polynomials and the concept of infinite 
elementary divisors of a factorized matrix. 

Necessary and sufficient conditions for the existence of a factorization 
of a 𝛻𝛻-symmetric invertible matrix 𝐴𝐴(𝑥𝑥)of degree 𝑚𝑚, in which the factor 
𝐵𝐵(𝑥𝑥) is an invertible polynomial matrix of degree𝑑𝑑𝑑𝑑𝑑𝑑   𝐵𝐵(𝑥𝑥) =
𝑑𝑑𝑑𝑑𝑑𝑑   𝐴𝐴(𝑥𝑥) 2⁄ , are obtained.  

In such factorizations, the condition is satisfied that the sum of the 
powers of the factored factors is equal to the power of the factored matrix. If 
this condition of equality of degrees is not satisfied, then the existence of a 
factorization of a 𝛻𝛻-symmetric invertible matrix is connected with the exis-
tence of an inadmissible factorization of a 𝑗𝑗-reversal polynomial matrix. 

Keywords: regular polynomial matrix, factorization of 𝛻𝛻-symmetric 
polynomial matrix, the Smith canonical form, reversal and 𝑗𝑗-reversal matrix 
polynomial, finite and infinite elementary divisors. 
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