УДК 517.537.72+517.548.9

DOI: 10.31471/2304-7399-2025-20(76)-15-23

ON THE STABILITY OF THE MAXIMUM TERM OF FUNCTIONAL SERIES IN A SYSTEM OF FUNCTIONS

A.Yu. Bodnarchuk, O.B. Skaskiv

Ivan Franko National Úniversity of Lviv; 79000, 1 Universytetska street, Lviv, Ukraine; e-mail: 8andriy1111@gmail.com, olskask@gmail.com

By L_+ we denote the class of positive continuous on $\mathbb{R}_+ := [0, +\infty)$ functions l(t) such that $l(t) \uparrow +\infty$ $(t \to +\infty)$, and by \mathscr{W} we denote the class of functions $w \in L_+$ such that $\int_1^{+\infty} x^{-2} w(x) dx < +\infty$. The article deals with the functional series of the form $F(x) = \sum_{k=0}^{+\infty} a_k f(x \lambda_k)$, where $\Lambda = (\lambda_k)$ is some sequence of non-negative numbers, $a_k \geq 0$ $(k \geq 0)$, and f is a positive increasing to $+\infty$ function on $[0; +\infty)$ with f(0) = 1 and $\ln f(x)$ is a convex function on the same interval. Let us denote $F_w(x) = \sum_{k=0}^{+\infty} a_k e^{w(\lambda_k)} f(x \lambda_k)$,

$$\mathbf{v}_0(t) = \mathbf{v}\{u \ge 0 \colon \ln f(u) \le t\}, \quad \mathbf{v}(G) = \sum_{\lambda_n \in G} e^{\mathbf{w}(\lambda_n)}$$

for every bounded set $G \in \mathbb{R}_+$, where $w \in L_+$. The main result of the paper is the following statement: If there exists a function $w \in L_+$ such that $a_n e^{w(\lambda_n)} f(\lambda_n x) \to 0$ for every x > 0, $\ln v_0 \in \mathcal{W}$, then there exists a set $E \subset \mathbb{R}_+$ of finite Lebesque measure such that the asymptotic relation $\ln \mu(x,F) = (1+o(1)) \ln \mu(x,F_w)$ holds as $x \to +\infty$ outside the set E, where $\mu(x,F) = \max\{a_k f(x\lambda_k) : k \ge 0\}$.

Key words: functional series, exceptional set, stability of a maximal term.

1. Introduction

Let $\mathcal{S}(f,\Lambda)$ be the class of positive convergent for all $x \ge 0$ the functional series of the form

$$F(x) = \sum_{k=0}^{+\infty} a_k f(x\lambda_k) \tag{1}$$

and $\mathcal{S}_+(f_0,\Lambda)$ be the class of positive convergent for all $x \ge 0$ the functional series of the form

$$F(x) = \sum_{k=0}^{+\infty} a_k f_0(x + \lambda_k)$$
 (2)

such that $a_k \ge 0$ $(k \in \mathbb{Z}_+)$; here $\Lambda = (\lambda_k)$ is some sequence of the nonnegative numbers $\lambda_k \ge 0$ $(k \ge 0)$, such that $\lambda_k \ne \lambda_j$ for all $k \ne j$; f and f_0 are some positive functions such that the functions $\ln f(x)$ and $\ln f_0(x)$ are convex functions on $[0, +\infty)$. In the case $f(x) \equiv e^x$, we obtain a Dirichlet series of the form

$$F_1(x) = \sum_{k=0}^{+\infty} a_k e^{x\lambda_k},\tag{3}$$

that converges for all $x \ge 0$, and we will write $F_1 \in \mathcal{D}(\Lambda) = \mathcal{S}(f, \Lambda)$ with $f(x) = e^x$.

Let L be a class of positive continuous on $\mathbb{R}_+ := [0, +\infty)$ the functions l(t) such that $l(t) \to +\infty$ $(t \to +\infty)$. By L_+ we denote the subclass of L such that $l(t) \uparrow +\infty$ as $x \to +\infty$, and by \mathscr{W} the class of functions $w \in L_+$ such that

$$\int_{1}^{+\infty} x^{-2} w(x) dx < +\infty.$$

For a series $F \in \mathcal{S}(f,\Lambda)$ and any sequence (b_n) , $b_n \in \mathbb{R}_+ \setminus \{0\}$ $(n \ge 0)$ we consider

$$B^{+}(x) = \sum_{n=0}^{+\infty} a_n b_n f(x \lambda_n), \quad B^{-}(x) = \sum_{n=0}^{+\infty} a_n b_n^{-1} f(x \lambda_n).$$

Proposition 1.1. If a sequence $\{b_n : n \ge 0\} \subset \mathbb{R}_+ \setminus \{0\}$ satisfies condition

$$b = \overline{\lim}_{n \to +\infty} \frac{\max\{\ln b_n, -\ln b_n\}}{\ln f(\lambda_n)} < +\infty, \tag{4}$$

then $F \in \mathcal{S}(f,\Lambda) \iff B^+ \in \mathcal{S}(f,\Lambda) \iff B^- \in \mathcal{S}(f,\Lambda)$.

Proof. From condition (4)

$$\max\{\ln b_n, -\ln b_n\} \le b_* \ln f(\lambda_n) \quad (n \ge 1)$$
 (5)

for some $b_* < +\infty$. If $F \in \mathcal{S}(f,\Lambda)$, then by the convexity of the function $\ln f(x)$ we get

$$\frac{\ln f(2x\lambda_n) - \ln f(x\lambda_n)}{x\lambda_n} \ge \frac{\ln f(x\lambda_n)}{x\lambda_n} \ge \frac{\ln f(\lambda_n)}{\lambda_n} \tag{6}$$

for all $x \ge 1$. Hence, for arbitrary fixed $b_* < +\infty$ one has

$$b_* \ln f(\lambda_n) + \ln f(x\lambda_n) \le \ln f(2x\lambda_n) \quad (x \ge b_*). \tag{7}$$

Therefore, combining (5) and (7) we deduce

$$b_n a_n f(x \lambda_n) \le a_n f(2x \lambda_n) \quad (x \ge b_*).$$

So,
$$F \in \mathcal{S}(f, \Lambda) \Longrightarrow B^+ \in \mathcal{S}(f, \Lambda)$$
.

Let us prove the reverse implication $B^+ \in \mathcal{S}(f,\Lambda) \Longrightarrow F \in \mathcal{S}(f,\Lambda)$. Using inequalities (5) and (7), we obtain

$$a_n f(x\lambda_n) \le b_n a_n \exp\{\ln f(x\lambda_n) + b_* \ln f(\lambda_n)\} \le b_n a_n f(2x\lambda_n) \quad (x \ge b_*),$$

hence, again by condition (5), we have $B^+ \in \mathcal{S}(f,\Lambda) \Longrightarrow F \in \mathcal{S}(f,\Lambda)$. From the proved implications, we easily obtain that

$$B^+ \in \mathscr{S}(f,\Lambda) \Longleftrightarrow B^- \in \mathscr{S}(f,\Lambda).$$

By $\mathcal{S}_*(f,\Lambda)$ we denote the class of formal series of form (1) such that $a_n f(x\lambda_n) \to 0 \ (n \to +\infty)$ for every $x \in \mathbb{R}_+$, i.e., for every $x \in \mathbb{R}_+$ there exists the maximal term

$$\mu(x,F) = \max\{|a_n|f(x\lambda_n): n \geqslant 0\} < +\infty.$$

We also write $\mathscr{D}_*(\Lambda) = \mathscr{S}_*(f,\Lambda)$ with $f(x) = e^x$. Clearly, $\mathscr{S}(f,\Lambda) \subset$ $\mathscr{S}_*(f,\Lambda)$.

ISSN 2304-7399. Прикарпатський вісник НТШ. Число. – 2025. – № 20(76)

Proposition 1.2. If $F \in \mathscr{S}_*(f, \Lambda)$ and the condition

$$h := \underline{\lim}_{n \to +\infty} \frac{-\ln a_n}{\ln n} > 1 \tag{8}$$

or the condition

$$\tau_f(\Lambda) := \overline{\lim_{n \to +\infty}} \frac{\ln n}{\ln f(\lambda_n)} < +\infty \tag{9}$$

holds, then $F \in \mathcal{S}(f, \Lambda)$.

Proof. It is sufficient to prove the convergence of a series (1) for all enough large x. At first, we assume that condition (9) is satisfied. From the conditions $F \in \mathscr{S}_*(f,\Lambda)$ and (9) it follows that for given x the inequalities $a_n f(2x\lambda_n) \le 1$ and $\ln n < \tau \ln f(\lambda_n)$ with some $\tau \in (\tau_f(\Lambda, +\infty))$ hold for all $n \ge n_0$. Therefore, for $x \ge 2\tau$ inequality (6) implies

$$a_n f(x\lambda_n) = a_n f(2x\lambda_n) \exp\{-(\ln f(2x\lambda_n) - \ln f(x\lambda_n))\} \le \exp\{-\ln f(x\lambda_n)\} \le \exp\{-x\ln f(\lambda_n)\} \le \exp\{-2\ln n\}.$$

So, series (1) is convergent for all $x \ge 2\tau$.

Assume that condition (8) is satisfied. Similarly to inequality (6) we have

$$\frac{\ln f(Kx\lambda_n) - \ln f(x\lambda_n)}{(K-1)x\lambda_n} \ge \frac{\ln f(x\lambda_n)}{x\lambda_n}, \quad K > 1,$$

so $\ln f(Kx\lambda_n) \ge K \ln f(x\lambda_n)$. From the conditions $F \in \mathscr{S}_*(f,\Lambda)$ and inequality (6) it follows again that for given x

$$\ln a_n + x \ln f(\lambda_n) \to -\infty \quad (n \to +\infty).$$

Since, by condition (8), $\ln a_n \le -h_* \cdot \ln n$ for arbitrary $h_* \in (1,h)$ and for enough large $n \ge n_0$, we obtain

$$\ln a_n + \ln f(x\lambda_n) \le (1 - \frac{1}{K}) \ln a_n \le -(1 - \frac{1}{K}) \cdot h_* \cdot \ln n.$$

Let us now choose K > 1 so that $h_1 := (1 - \frac{1}{K}) \cdot h_* > 1$. Then

$$\sum_{n=n_0}^{+\infty} a_n f(x\lambda_n) \le \sum_{n=n_0}^{+\infty} n^{-h_1} < +\infty,$$

that is $F \in \mathcal{S}(f, \Lambda)$.

2. Main result.

We call that a series of the form (1) (maximal tem of the series) is stable if the relations

$$\ln \mu(x,F) = (1+o(1)) \ln \mu(x,B^+) = (1+o(1)) \ln \mu(x,B^-)$$
 (10)

hold as $x \to +\infty$ outside some set $E \subset [0, +\infty)$ of the finite Lebesgue measure, i.e. meas $E := \int_E dx < +\infty$.

For a function $w \in L$ let us denote

$$B_w(x) = \sum_{n=0}^{+\infty} a_n e^{w(\lambda_n)} f(x\lambda_n).$$

From Theorem 2 and Theorem 3 ([4]), proved for entire multiple Dirichlet series, it follows the following statement.

Theorem A ([4], Theorem 2). Let $w \in L$, $B_w \in D_*(\lambda)$ and condition

$$\int_0^{+\infty} t^{-2} \ln \nu_0(t) dt < +\infty \tag{11}$$

is satisfied, where $v_0(t) = \int_0^t e^{w(x)} dn(x)$, $n(x) = \sum_{\lambda_n \leq x} 1$. Then relation

$$\ln \mu(x, F) = (1 + o(1)) \ln \mu(x, B_w)$$
 (12)

holds as $x \to +\infty$ outside some set $E \subset [0; +\infty)$, meas $E < +\infty$.

Theorem A implies the following corollary.

Corollary 2.1. Let $F \in \mathcal{D}_*(\Lambda)$. If there exists a function $w \in L$ such that $F_w \in \mathcal{D}_*(\Lambda)$, $\ln v \in \mathcal{W}$ (here $v(t) = \sum_{\lambda_n \leq t} e^{w(\lambda_n)}$) and

$$e^{-w(\lambda_n)} \leqslant b_n \leqslant e^{w(\lambda_n)} \quad (n \ge k_1),$$
 (13)

then there exists a set $E \subset \mathbb{R}_+$ of finite Lebesque measure such that

$$\ln \mu(x,F) = (1+o(1)) \ln \mu(x,B_+) = (1+o(1)) \ln \mu(x,B_-)$$
 (14)
as $x \to +\infty$ ($x \notin E$).

Other versions of these statements were proved earlier in paper [2] by O.B. Skaskiv and O.M. Trakalo.

Let us denote

$$v_0(t) = v\{u \ge 0 \colon \ln f(u) \le t\}, \quad v(G) = \sum_{\lambda_n \in G} e^{w(\lambda_n)}$$

for every bounded set $G \in \mathbb{R}_+$. In this note, we will first prove the following theorem.

Theorem 2.1. Let $F \in \mathscr{S}_*(f,\Lambda)$. If there exists a function $w \in L_+$ such that $B_w \in \mathscr{S}_*(f,\Lambda)$, $\ln v_0 \in \mathscr{W}$ and inequalities (13) are valid, then there exists a set $E \subset \mathbb{R}_+$ of finite Lebesque measure such that relation (14) holds as $x \to +\infty$ $(x \notin E)$.

We need the following statement from [3, Corollary 1]. We consider the class $\mathscr{I}(v,f)$ of functions $F \colon \mathbb{R}_+ \to \mathbb{R}_+$ represented by integrals of the form

$$F(x) = \int_0^{+\infty} g(t)f(tx)v(dt),$$

where v is a locally finite measure on \mathbb{R}_+ , g is positive v-measurable function, f is positive increasing to $+\infty$ in $[0;+\infty)$ function such that f(0) = 1 and $\ln f(x)$ is a convex on the interval $[0;+\infty)$ function.

Lemma 2.1 ([3]). If condition (11) holds with $v_0(t) = v(\{u \ge 0 : \ln f(u) \le t\})$, then for every function $F \in \mathcal{I}(v, f)$ there exists a set E of finite Lebesgue measure such that the asymptotic relation

$$\ln F(x) \le (1 + o(1)) \ln \mu(x, F)$$
 (15)

holds as $x \to +\infty$ ($x \notin E$), where $\mu(x,F) = \sup\{g(t)f(tx) : x \in \text{supp } v\}$ and supp v is the support of the measure v.

Proof of Theorem 2.1. Note that relation (13) will follow from the fact that

$$\ln \mu(x, F) = (1 + o(1)) \ln \mu(x, B_w) \tag{16}$$

as $x \to +\infty$ outside of some set *E* of finite Lebesgue measure. Let us prove relation (16).

Let a(t),b(t) be measurable nonnegative functions on \mathbb{R}_+ such that $a(\lambda_n)=a_n,\,b(\lambda_n)=e^{w(\lambda_n)}$ and

$$\mu(x,F) = \sup\{a(t)f(tx) : t \in \mathbb{R}_+\}, \ \mu(x,B_w) = \sup\{a(t)b(t)f(tx) : t \in \mathbb{R}_+\}.$$

It is enough to take that a(t) = 0 for $t \notin \{\lambda_n : n \in \mathbb{Z}_+\}$.

Then for all $x \in \mathbb{R}$ we get

$$\mu(x,F) \leqslant \mu(x,B_w) \leqslant B_w(x) = \sum_{n=0}^{+\infty} a_n b(\lambda_n) f(x\lambda_n) = \int_{\mathbb{R}_+} a(t) f(tx) v(dt), \quad (17)$$

where measure ν is such that $\nu(G) = \sum_{n=0}^{+\infty} b(\lambda_n) \delta_{\lambda_n}(G)$ for each bounded set $G \subset \mathbb{R}_+$ and $\delta_{\lambda}(G) = 1$ for $\lambda \in G$ and $\delta_{\lambda}(G) = 0$ for $\lambda \notin G$.

From condition $\ln v_0 \in \mathcal{W}$ we immediately get that condition (11) of Lemma 2.1 is satisfied. Applying Lemma 2.1 to the integral in (17), as $x \to +\infty$ ($x \notin E$), (here a set E is such as in Lemma 2.1) we obtain

$$\ln \mu(x, F) \leq \ln \mu(x, B_w) \leq (1 + o(1)) \ln \mu_*(x),$$

where $\mu_*(x) = \max\{a(t)f(xt): t \in \mathbb{R}_+\}$. As for the choice of function a(t) we get $\mu_*(x) = \mu(x, F)$ and deduce relation (16).

3. Conjectures.

1. A statement similar to Lemma 2.1 is true for integrals of the form

$$F(x) = \int_{0}^{+\infty} g(t)f(x+t)v(dt)$$

(see, for example, the proof of Theorem 2 in [5].)

2. A statement similar to Theorem 2.1 is true for series of form (2).

References

1. O.B. Skaskiv, On certain relations between the maximum modulus and the maximal term of an entire Dirichlet series, *Math. Notes*, **66** (1999), 223–232. https://doi.org/10.1007/BF02674881

- 2. O.B. Skaskiv, O.M. Trakalo, On the stability of the maximum term of the entire Dirichlet series, *Ukr. Mat. Zh.*, **57** (2005), no.4, 571–576. (in Ukrainian); English transl. in *Ukr. Math. J.*, **57** (2005), 686–693. https://doi.org/10.1007/s11253-005-0220-9
- 3. O.B. Skaskiv, O.Yu. Tarnovecka, D.Yu. Zikrach, *Asymptotic estimates of some positive integrals outside an exceptional sets*, Internat. J. Pure Appl. Math. (IJPAM), **118** (2018), №2, 157–164. https://www.researchgate.net/publication/391190101
- 4. Dolynyuk M.M., Skaskiv O.B. *On the stability of entire multiple Dirichlet series*, Mat. Stud., **43** (2015), no. 2, 171–179. https://doi.org/10.15330/ms.43.2.171-179
- 5. Bodnarchuk A.Yu., Skaskiv O.B., Trusevych O.M. *About Borel type relation for some positive functional series*, Mat. Stud., **63** (2025), no. 1, 98–101. https://doi.org/10.30970/ms.63.1.98-101

Received by editorial office 05 May 2025

ПРО СТІЙКІСТЬ МАКСИМАЛЬНОГО ЧЛЕНА ФУНКЦІОНАЛЬНОГО РЯДУ ЗА СИСТЕМОЮ ФУНКЦІЙ

А.Ю. Боднарчук, О.Б. Скасків

Львівський національний університет імені Івана Франка; 79000, вул. Університетська, 1, Львів, Україна; e-mail: 8andriy1111@gmail.com, olskask@gmail.com

Через L_+ позначимо клас додатних неперервних на $\mathbb{R}_+ := [0, +\infty)$ функцій l(t) таких, що $l(t) \uparrow +\infty$ $(t \to +\infty)$, а через \mathscr{W} – клас функцій $w \in L_+$ таких, що $\int_1^{+\infty} x^{-2} w(x) dx < +\infty$. Розглядаються функціональні ряди вигляду $F(x) = \sum_{k=0}^{+\infty} a_k f(x \lambda_k)$, де $\Lambda = (\lambda_k)$ — послідовність невід'ємних чисел, $a_k \geq 0$ $(k \geq 0)$, f — додатна функція, що зростає до $+\infty$ на $[0; +\infty)$ і f(0) = 1, а функція $\ln f(x)$ — опукла на інтервалі $[0; +\infty)$. Позначимо $F_w(x) = \sum_{k=0}^{+\infty} a_k e^{w(\lambda_k)} f(x \lambda_k)$,

$$v_0(t) = v\{u \ge 0 \colon \ln f(u) \le t\}, \quad v(G) = \sum_{\lambda_n \in G} e^{w(\lambda_n)}$$

для кожної обмеженої множини $G \in \mathbb{R}_+$, де $w \in L_+$. Основним результатом статті є таке твердження: якщо існує така функція $w \in L_+$, що $a_n e^{w(\lambda_n)} f(\lambda_n x) \to 0$ для кожного x > 0, $\ln v_0 \in \mathscr{W}$, то існує множина $E \subset \mathbb{R}_+$ скінченної міри Лебега така, що асимптотичне співвідношення $\ln \mu(x,F) = (1+o(1)) \ln \mu(x,F_w)$ виконується при $x \to +\infty$ зовні множини E, де $\mu(x,F) = \max\{a_k f(x\lambda_k): k \geq 0\}$.

Ключові слова: функціональні ряди, виняткова множина, стійкість максимального члена.