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We investigate properties of entire solutions of the Cauchy problem for
one-dimensional homogeneous hyperbolic equation. Considering analytic
continuation of the solutions given by the D’Alambert formula we have found
some conditions providing L-index boundedness in the direction for some
functions related with the solutions. In particular, for homogomogeneous
wave equation czg—;u(x,t) = aTZZM()c,t) with initial conditions u(x,0) = ¢(x),
u;(x,0) = y(x) its solution has the form

_ oberen)robe) 1 Py
u(x,t) = > +5: [ y(a)da.
xX—ct
) . x+ct
We study the functions $)(x,t) = w +5 [ w(a)do, where
xX—ct

x,t, c € C, € is a positive constant which is determined with some conditions
by the functions ¢ and Y. Our main result gives sufficient conditions of
boundedness of L-index in a direction b for the functions $). Its proof
uses known sufficent conditions for the sum of entire functions. At the
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end, we pose open problems concerning conditions of the directional L-
index boundedness for analytic solutions of the Cauchy problem of the heat
equation. The conditions will allow a qualitative description of local and
asymptotic behavior of the parabolic equation analytic solutions presenting
the temperature distribution in the process of plasma electrolytic oxidation.

Key words: analytic solution, Cauchy problem, one-dimensional hy-
perbolic equation, sum of functions, bounded L-index in a direction, wave
equation, heat equation, PEQO.

1. Introduction
In the last years, there were published many papers on analytic solutions of
partial and directional differential equations, and their properties such as local
behavior of maximum modulus on the disc, polydics, ball, some uniform
distribution of zeros, partial and directional logarithmic derivatives outside
some exceptional sets, grotwth estimates, etc. These properties are justified
by methods of theory of functions having bounded index. These investigati-
ons deal general solutions of the equations. But for many partial differential
equations it is very difficult to study the asymptotic and local behavior of
solutions (see below example from Goldberg [2]) bacuse they have a suffici-
ently general structure.

It is known that every entire or meromorphic solution of an ordinary
algebraic differential equation in the complex plane has finite order of growth.
This does not hold for algebraic partial differential equations. A. Golberg
presented such an example [2]

Wy
Don  Poxa

It is satisfied by the function w = f(z122), where f(u) is an arbitrary entire
function of single complex variable.

Therefore, it generates the necessity to study partial entire solutions of
these equations using natural formulations of problems for them.

The paper initiates a series of papers devoted index boundedness of
entire solutions for the Cauchy and the boundary problems in the case of
the second order partial differential equations. At the end, we pose open
problems concerning conditions of the directional L-index boundedness for
holomorphic solutions of the Cauchy problem of the heat equation. The condi-
tions will allow a qualitative description of local and asymptotic behavior of
the heat equation holomorphic solutions presenting the temperature distributi-
on in the process of plasma electrolytic oxidation.
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2. Main definitions
An entire function F(z), z € C", is called (see [9]) a function of bounded L-
index in a direction b € C"\ {0}, if there exists mg € Z such that for every
m € Z, and every z € C"

1 d"F(2) 1 akF(z)
<k<
miL(z) | ob" —ma"{w<z> gpi | 0Sksmog, (D)
2" P =9 — ok k-1
where aigZ) =F(2), %::El gz(,-z)bj = (gradf.b), _;;)_g(z) = 55 8b_kli(1Z))7
k>12. '

The least such integer my = mg(b) is called the L-index in the direction
b € C"\ {0} of the entire function F(z) and is denoted by Ny(F,L) = myg. If
such mg does not exist then F is called a function of unbounded L-index in
the direction b and we suppose that Ny(F,L) = co. If L(z) = 1 then F(z) is
called a function of bounded index in the direction b and Ny, (F) = Ny(F, 1).

Forn >0,z€C", b= (by,...,b,) € C"\ {0} and a positive continuous
function L: C" — R, we define

. L(z+1b) n }
Ab 1 =infd —:jt—n < ——
1 (Z7 07”) m {L(Z+t0b) | 0| = L(Z+t0b) 5

/llb(zan) = inf{/’L]b(z,tO,n) RS (C}v M’(’?) = lnf{A]b(Z,TI) 1zZE (Cn}a

b _ Lizttb) 1
M =sp{ 7 EE )< T

23 (z,n) = sup{A2(z10,1) : 10 € C}, A7(n) =sup{A7(z,m) : z€ C"}.
By Qp we denote the class of functions L which satisfy the condition

(VR >0): 0<AP(N) < (1) < +oo. (2)

It 1s known that a product of two entire functions of bounded L-index in
direction is a function with the same class [5]. But the class of entire functions
of bounded index is not closed under addition. The example was constructed
by W. Pugh (see [11] and also [12]). Recently we generalized Pugh’s example
for entire functions of bounded L-index in direction [5].

Meanwhile, there are direct sufficient conditions of index boundedness
for a sum of two entire functions [11], and implicit sufficent conditions for
the sum by the soltuions of differential equations [13]. These results were
generalized for multivariate entire functions [9, 7], analytic functions in the
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unit ball [8], slice entire functions [4], slice analytic functions in the unit ball
[6].

We consider an arbitrary hyperplane A = {z € C": (z,c) = 1}, where
{c,b) # 0. Obviously that UzoeA{zo-i-tb :1eC}=C"

Let 72 € A be a given point. If F(z° +1tb) # 0 as a function of variable
t € C then there exists fy € C such that F (ZO +1tob) # 0. Thus, for every line
{z°+1b: F(z°+1b) # 0} we fixed one point #, with specified property. By B
we denote a union of those points 2° + b i.c. B= | J {" +1ob}.

VeA
F("+tb)#0

Theorem 2.1 ([9]). Let L € Qf, a € (0,1) and F, G be the entire in C"
functions satisfying conditions:

1) G(z) has bounded L-index in the direction b € C"\ {0}.
2) for every z =20 +1tb € C", where 2° € A, 2+t b € B and r = |t —
to|L(z° + tb) the following inequality is valid

2r
F(2+b)|: | =t = ——— ' <
max{| (2 +1'b)|: [t' =10 L(zO—Hb)}_

1

kG (° +1b)
< max
K!\LK(Z9 +1tb)

dbk

220 (1
max{\F(z0+t/b)| s 1| = —L(z}(?%—(to{))}

3) c:= sup
D-+1obeB |F (2% +1ob)]

If |e| < 152 then the function H(z) = G(z) + €F (z) is of bounded L-index in
the direction b with Ny (H,L) < Ny(Ga,Le), where G (z) = G(z/ ), La(z) =
L(z/o).

3. Main theorem
The D’Alambert formula is the formula that describe solution of the Cauchy
problem for the one-dimensional non-homogomogeneous wave equation:

92 1 02
wl/l(x,t)—c_zwuogt):f(xﬂt)' (3)

in the domain ¢t > 0, —eo < x < oo with initial conditions

u(x,0) = @(x), ur(x,0) = y(x). (4)
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The formula has the following form

x+ct t x+c(t—1)

u(x,r) = (p(x—f—ct)—;—(p(x—ct) + 21c / o)dao + 21c/ / f(s,7)dsdt.

x—ct Oxc

6))
We will consider the formula in two-dimensional complex space C?, i.e.
xeC,teC.
Since the D’Alambert formula contains three addendums we will apply
Theorem 2.1 to deduce the following theorem.

Theorem 3.1. Let ¢ : C — C, y: C — C be entire functions, | : C — R,
1 € Q, c € C\{0}. The following conditions are satisfied:

(1) @ is of bounded l-index N(¢,l) <
(2) the function F(x,t) = @(x+ct) + @(x—ct) is of bounded L-index in
the direction b = (by,b), where the function L is given by the formula
L(x,1) = max{l(x—ct),l(x+ct)} and by — byc # 0;
2ct+(b1+bye)T

(3) For every point t € C the function ¥,(t) = J v(a)da #0;
(bl—bzc)l’
26‘[+(b1+b20)l‘/
(4) For every pointt € C one has max ‘ J l//(s)ds| <

' =t|=2lt=t0l (b by’

_c0<k<rl\liég§m£a){’(1 cba)" - @ (b1 — bac)t)+

+(by +cby)*- @M (b1 + (by+2)e)1)| /(K15 ((cy +b1)1, (1 +b2)t))} .

where Ty is chosen such that ¥,(1p) # 0;
(5) There exist such positive constant € such that

2ct+(by+bac)t’
max {\ / Y(s)ds| : 1" = 7| = 222"<1)/£(c1t+bmo,t+bzro>} <

(b1—bac)t’
2ct+(b1+b2c) T
< 6‘ / y(a)dal. 6)
(b1—b2c)To
X—+ct
If le| < ﬁ then the function $)(x,t) = w—i— >~ | v(a)do
x—ct

is of bounded £-index in the direction b with Ny($,£) < Ny (5, L),
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Proof. Denote ¢ = (1,—c). Since ¢ is of bounded /-index,

d"@(x—ct)

T = (b,c_)"@"™ (x —ct) for any m € N,

the function @(x — ct) is of bounded /;-index in any direction b = (by,b;) #
(0,0), where [; (x,t) =I(x—ct). Similarly, the function ¢(x+ct) is of bounded
L-index in any direction b = (b,by) # (0,0), where Iy (x,1) = [(x+ct).

It is known [1] that if [; < I, for any and f : C — C has bounded /-
index in a direction b, then f: C — C is also of bounded /;-index in the
same direction b. Given this fact, every function @ (x—ct) and @(x+ct) is of
bounded £-index in the direction b = (by,b;).

The function £(x,t) = max{l(x—ct),/(x+ct)} belongs to the class Q3.
This fact can be proved by a direct check of inequality A?(n) < oo is finite
because [ € Q by Condition 1) (see similar statements and corresponding
tehcniques for the classes Qp in [14], Q" in [15], Qp(ID"?) in [16], respectively.

Condition 3) in the theorem provides existence of non-empty sets A and
B in Theorem 2.1: A = {(z,¢) € C?: z—ct =0} = {(ct,t): t € C},

2ct+(by+byc)T

B=|J{(ct+bi7,1+by7): / v(a)da #0}.

teC (bl—bzc)f

Condition 4) in the theorem gives validity of Condition 3) in Theorem

2.1 with (9,29) = (ct,1), to = 0, F(21,22) = %fzzlljfzz; v(s)ds,

(P(Z1 — CZz) + (P(Z1 + CZz)
2

G(ZI,ZZ) = 5 L(Z17Z2) = 2(117Z2)'
Similarly, Condition 5) in the theorem yields validity of Condition 4) in
Theorem 2.1. Thus, applying Theorem 2.1 we obtain the desired conclusion.
]

Problem 1. Let ¢ : C — C, y: C — C be entire functions, ¢ € C\ {0}, ¢ is
of bounded /-index N(¢@,l) < oo, and £(x,1) = max{l(x—ct),l(x+ct)}.

Has always the function §(x,7) = ¢@(x+ct) + ¢@(x —ct) the bounded £-
index in the direction b = (by,b;)?

Let us consider the simplest Cauchy problem for the heat equation:

u, = Ay, (xeR, t € (0,+)), u(x,1) = o(x).
t=0
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Its solution given by the Fourier transform method is the following

1 e —A)?
)= 5o /_ o)exp (—(X 4a2t) )d?t, )

if the integral [~ |f(x)|dx is converged.

Let ¢ be an infinitely differentiable function supported in [—A,A]. Then
by the Paley-Wiener Theorem there exists an entire function of exponenti-
al type such that it is just ordinary Fourier transform of the function ¢.
Mroeover, every entire function of single variable with bounded index is a
function of exponential type. This leads to the following question:

Problem 2. What are the function L and the direction b such that an analytic
continuation of the function u(x,7) given by (7) has bounded L-index in the
direction b?

A full answer to the question will allow to study local and asymptotic
behavior of analytic solutuions for multidimensional heat equation in various
geometric domains. In particular, it will be applicable to describe temperature
distributuion in the cylindrical bodies whose coating is formed by the plasma
electolytic oxidation.
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PO ®YHKIIII, MOB’SA3AHI 3 AHAJIITUMHUMMU PO3B’SI3KAMHU
3ATAYI KOHI JJIA XBUJIBOBOI'O PIBHAHHS TA PIBHAHHSA
TEIIJIOITPOBIIHOCTI

A.l. BaHaypa
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Jocnioxcytomscs enacmugocmi yinux po3e 'a3kie 3adavi Kowii 0151 00HO-
BUMIPHO20 0OHOPIOHO20 2inepOoniuno2o pisHaHHA. Posensdarouu ananimuune
NPOo00BIHCEHHS PO36 A3Ki6, 3a0anux Gopmynorw [ ’Anambepa, mu 3HAxX00UMO
0esKi yMosu, wo 3abe3neyyroms oomediceHicmos L-in0eKkcy 3a Hanpsamkom 07is
QDyHKYil, No8 A3aHUX 3 YUMU PO38 A3KAMU. 30Kpema, 051 0OHOPIOHO20 X6U-
NIbOBO2O PIGHSIHHS czg—;u(x,t) = g—;u(x,t) 3 nouamkogumu ymogamu u(x,0) =

O (x), ur(x,0) = Y(x) sioeo po3s’azok mae euensno
X+ct

u(x,t) = w + %x!a y(a)da.
. _ @(xtet)+o(x—cr)
Hamomicmo eusuaromoca @ynkyii' suenady $(x,t) = H——5——— +

x—+ct

2% [ y(a)da, oe x, t, c € C, € — dodamna cmana, wo GUIHAYAEMbCS 3
x—ct

oesikux ymos Ha @yukyii' @ ma Y. Haw ocnoenuii pesynomam odae docma-

mHui ymoeu oobmedxcenocmi L-inoexcy 3a manpsimkom b ons maxux ¢ynxyii
$). Hoeo 0osedenns suxopucmogye 6ioomi 0oCmamui yMoeu ONs CyMu yi-
aux ¢ynxyiu. Hacamkineyb cmagumo iokpumi numauHs npo ymosu oome-
orcenocmi L-inoexcy 3a nanpamkom 018 GHATTMUYHUX po36 A3Kie 3a0ayi Kowti
0151 piBHAHHA menaonpogionocmi. L{i ymosu oadyms 3mo2y AKiCHO onucamu
JIOKAIbHY Ma acUMIMOMU4HYy N0GeOiHKY AHANIMUYHUX PO38 [3Ki6 napaboii-
YHO20 PIBHAHHS, WO ONUCYIOMb PO3NOOLL MmeMnepamypu nio 4ac niasmosozo
eIeKmpOoNiMmu4H020 OKCUOYBAHHSL.

Knrwouoegi cnosa: yinuii po3s’ssok, sadaua Kowi, oonosumipne cinep6oui-
yHe pIBHsAHHA, cyma QYHKYIl, oomedcenull L-in0eKc 3a HanpsamMKoM, X8UlbOge
piensanns, pieusanns menionposgionocmi, I1EQO.
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