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The research demonstrates sufficient conditions of the existence and
uniqueness for the solution in the oscillation mathematical model of the
blood flow under nonlinear dissipative forces action within the theory of he-
reditary tube with biofactor. The obtained qualitative results advocate the
application of Galerkin method to the above-mentioned problem. These re-
sults facilitated the application of different (explicit and implicit) numerical
methods in further studies of the dynamical characteristics of solutions in
the considered oscillation mathematical models. Numerical integration of
the movement equations by Runge-Kutta 4th order method and Geer 2nd or-
der method in a model case within this research enabled the estimation of
the influence of different physical and mechanical factors on the amplitude
and frequency of the oscillation process. The use of hybrid methods for the
oscillation modeling in the nonlinear isotropic elastic environment on the
example of a vessel enabled the formulation of the equation of an object’s
mechanical state based on energy approaches and the theory of mechanical
fields in the continuous environments.
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1 Introduction

Modern social development trends such as the problems of human sur-
vival and healthy lifestyle preservation are closely interconnected with the
general human problems. Under such circumstances, top priority tasks are to
improve the quality of human life, to devise a formula for active longevity,
and to raise the individual living standards. Physical and spiritual human
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self-awareness should be also considered. That is why the problem of an
adequate mathematical modeling of the processes in living organisms is the
problem of current interest for the modern healthcare and science in general.
A lot of actual material that was collected by practitioners and enriched by
modern hardware investigations attracts close attention of experts in numeri-
cal modeling. Processes providing human vital activity are so complicated
and connected that the liaison between mathematicians, biologists and doc-
tors is insistent demand for successful results. Such collaboration allows
providing insights into regularities of human organism functioning as a
unity, and as a result, assists an increase in human active lifestyle. At the
same time computer modeling is progressing, and the requirements for
mathematical models describing these processes are increasing. Almost all
main organs and human organism systems become the object of research in
modern physical modeling. Other areas of interest for researchers are the
processes at the cellular and genetic levels. Many mechanisms of disease
occurrence and course are being studied: wounds healing; oncological proc-
esses; immunological issues; drug delivery; creation and functioning of the
artificial organs. Mathematical models of many organs and body parts —
skin, bones, muscles, circulatory system etc, — are based on mechanical
models which are well-known from the mechanics of deformed solids. Hy-
drodynamic staging based on the Navier-Stokes equations appear in hemo-
dynamic problems, functioning of respiratory and digestive organs, etc. The
approaches based on the diffusion reactions and thermal conductivity equa-
tions comprise a significant part of mathematical models of thrombosis,
stomach and skin functioning, and disease treatment by thermotherapy and
chemotherapy. Differential equations systems form the basis of the blood
circulation model, nerve impulses transmission, cellular interactions and
gene networks functioning. Hybrid models, which present all aspects of
medical and biological processes in their correlation, become more and more
popular.

The spectrum of the considered problems is so wide that the whole in-
vestigation review is almost impossible. Brief but sufficiently capacious re-
view of the mathematical models for many medical-biological processes,
based on the well-known models and methods of the mechanics of continu-
ous media is presented in [1]. More deepened analysis of medical-biological
and mathematical aspects is proposed, particularly, in [2-6].

Mathematical modeling of the normal physiological and pathological
processes is the most topical direction in the scientific study. The reason is
that the modern medicine is mainly experimental science with the great em-
pirical practice of influence on the disease course by the different facilities.
But experiments are restricted concerning to the detailed study of many
processes | n alive organism. The most effective apparatus in this case can
serve the mathematical modeling. Development of the apparatus means the
construction of closed mechanical-mathematical model of the process de-
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scribing the behavior of the biological media basing on the partial differen-
tial equations. Herewith the necessary elements are such as determination of
the rheological relationships, describing the behavior of some media part
(equation mode, relationship between the components of the stress and strain
tensors, etc.). The corresponding initial and boundary conditions are neces-
sary for the mathematical problem correctness as well.

Numerical modeling of the biomechanical processes in the medical
practice is realized using the models of mechanics of continuous media and
numerical methods of solving the corresponding partial differential equa-
tions systems. Such modeling takes into account the development and reali-
zation of the numerical methods, adapted to the specified concrete tasks, de-
velopment of the numerical method algorithm and its program package,
visualization of the obtained results. Examples of the successful use of the
mentioned mathematical methods are presented in [7] to solve the problems
of the nonlinear dynamics in the chemical kinetics. To study some medical
processes there is necessary to solve numerically the differential equations
systems [6]. Biological and medical problems involving to numerical solu-
tions of the partial differential equations are described in the papers [5, 6].
Rheological relationships for the biological continuous media are developed
in [8, 9]. The mechanical model of the heart was considered in [10-14]. De-
scription of the simplest mathematical models of the circulatory system and
heart one can find in [15-17]. Circulatory system consisting from the large
and lesser circulation, possesses very serious and different functions, that is
why their modeling in the normal and pathological conditions, is very impor-
tant task in medicine. For today the most adequacy to the real physical circu-
latory systems there are dynamical models of the pulsating flows of the in-
compressible fluids in the elastic tubes system.

2 Problem statement. Mathematical models of blood circulation
within the theory of multilayer elastic cylindrical tube

2.1 Linear mathematical models of hereditary biofactor tube

Study of the wave propagation process in the deformed tubes with the
liquid leaking through the tube is widespread applicated [18]. These prob-
lems are actual, in particular, in case of blood circulation modeling in alive
organisms. Problems of blood flows and oscillations propagation in large
blood vessels are very important to understand the functioning, regulation
and control the cardiovascular system. As follows, diagnostics, surgery and
prosthetics are bound up the hemodynamics [19, 20]. In the mathematical
modeling of blood flow there is considered pulsed systaltic blood flow in the
multilayer elastic or viscous elastic tube with the variable cross-section.
More complicated mathematical models of blood circulation in the tubes that
possess reaction on the external action (biofactor). This type models describe
blood circulation in arteries and veins. Proposed mathematical models are
obtained using continuum media mechanics and hereditary theory approach
[19, 20].
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There is given a multilayer cylindrical tube (vessel) with radius R(x),
length [ (finite of semi-infinite) and depth h. This tube consists of n different
by depth layers 8, (2 = X7 &), which are connected by common circular
concentric surfaces between them. Hereby, R(x) is monotonically decreas-
ing (nonincreasing) function. Hydrodynamic pressure on the vessels walls is
described by formula

P(x,t) = X0y 8,E[W(x,t) — [ I;(0) - W(x, t — 6)d6],

where:
e in case of the linear elasticity law o, = e E,, 0o, IS stress, e, is
deformation in the corresponding s — layer;
e in case of the linear hereditary elasticity law
Os = esE;! E.: = Es(l - I;*))
I is stress relieving operator, I"f = ["I3(6) f(t — 6)d®);
e W(x,t) is radial displacement of the wall for the multilayer
package as a whole, it being known that
Oy =Es% or gy =ES*%
in the linear elasticity and the linear heredity cases, respectively.
e the circular intension N is determined by formula N = Y7, §,0;.
The next formulae are valid in the linear elasticity and the linear
heredity cases, respectively,

w
P(x,t) = a, 72
or
P(x,t) = 31y §E[W(x,t) — [ T,(8) - W(x, t — 6)d6)],

a, is some positive constant, depending on the elastic characteristics of the
vessels walls and layers quantity.

More complicated model predicts the reaction of the vessels walls on
the external action [19]. This mathematical model is based on the hypothesis
that the body (vessel) material possesses a property to react on the external
irritants changing its elastic characteristics. According to this hypothesis true
stress g, in every layer at that time instant equals to the sum of passive stress
o) and the reaction (biological factor) R;,,, besides that o5 =00 +
+Rp,;; (t), where the biofactor depends on the applied intension value in

time moment, directly preceding to the given one. Thus, 0 < A, <1, 7 IS
602
ot ’

time delay of the reaction, T « t. Assume that o, = (1 — 05)00 + AT
As above, for the linear elasticity

0

O-S

Es

= | =

and for the linear heredity

0 *
O—S ES

SE
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Taking into consideration all mentioned about the vessels walls inten-
sions in this mathematical model one can accept that

P(x,t) = RZZ&E[(l A)W(xt)+AT—]

for the linear elasticity case and
P(x,t) = = 30y 8BS [(1 = AW (1) + At 22| (W, 0) —
—O00/s6-Wx,t— 8db (¢D)

for the linear heredity case.
2.2 Hemodynamics equation in the linear mathematical models of
blood circulation
Notice is that from the formula (1) one can get different mathematical
models of the deformed solid body, namely:
e linear elastic tube model (4, = I; = 0),
e linear hereditary tube model (4, = 0, I; # 0),
e linear elastic tube with the reaction (biofactor) model
(A, # 0, I, = 0).
Hemodynamics equation differs in every case.
A. The linear elastic tube [19]. Oscillations equation of the blood

flow is the next:
a (14Q 2%Q | 8xdQ\ _
(i) 2 Ga+a5) =0
where Q = SUis blood consumptlon, S(x) = mR?(x) is area of the tube
cross-section, U(x,t) is blood averaged flow rate, p is blood density, y is
coefficient of kinematic viscosity.
B. The linear hereditary tube [19]. Oscillations equation is:
n a1 6Q(xt 9) p (9%0Q 8x 3Q\ _
s=1 6SES_6x [R ( f HON de)] (atz TR at_) __0'
C. The linear hereditary blofactor tube [20]. OSC|IIat|0ns equation is:

n d aQ 07Q \| _2p (92Q | 8x9QY _
5:155556[ <(1 A) +AS 6x6t>l (at2+R2 6t)_

Solutions of these equations can be found as finite sum of the main os-
cillation and the higher harmonics, using the harmonic analysis methods.

2.3 The nonlinear mathematical model of the hereditary biofactor
tube

To study complicated impulses, specific to the circulatory system, it is
often necessary to consider the nonlinear models instead the linear ones. It is
impossible to find the exact solution in this case. Background of the nonlin-
ear mathematical models study is numerical (computer) modeling. Applica-
tion of this approach also can’t be universal study method due to the other
problems, for example, procedure convergence, numerical method’s stabil-
ity, accuracy of computation. That’s why it is reasonable to develop hybrid
methods to study the nonlinear oscillations mathematical models combining
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both the qualitative and numerical approaches [21, 22]. It is realized thor-
ough qualitative description of the solution’s characteristics respectively to
the problem. Usually, it is based on Galerkin method or on its different
modifications. After that the numerical methods are applicated to find the
approximate solutions. Herewith choice of the numerical method is of no
principle from the theoretical aspect, and can be determined by effectiveness
of the numerical realization only.

Using all mentioned above, let’s consider the oscillations equation of
blood flow in the nonlinear isotropic environment. It would be studied the
problem of the blood flow oscillations equation within the mathematical
model of the linear hereditary tube with biofactors and nonlinear external
dissipative forces in the form

0% _ 20%Q , ¢ %0 v

- i @
at2 ox? p10x2at pylot at'’

where a = \/?, and p; is the linear blood density in the finite tube with
l

fixed length I, N; is uniformly distributed by tube length force, causing the
initial oscillations, v, ¢ are the coefficients of the external and internal dissi-
pations of the environment, respectively, p > 2. The nonlinear oscillations
of the tube with the constant radius of the cross-section R in the case of the
initial amplitude replacement and the initial zero rate would be considered.
The case of rigidly fixed by length tube also would be considered. It is rea-
sonable to study the equation (2) in the rectangle Ty = [0; [] x [0; T] mixed
problem with the initial conditions

Q(x,0) = Qo(x), 3 (x,0) =0 (3)
and the boundary conditions
Q(0,6) =Q(t) =0. (4)

For the case p = 2 the equation (2) is considered in the previous chapter
within the linear elastic tube with the reaction (biofactor) model. In this pa-
per the linear model is involved by the nonlinear factors.

Discussed procedure for the nonlinear mathematical model of blood
circulation (2), (3), (4) would be illustrated in the next chapters.

3 Study of the problem solution existence and uniqueness via
Galerkin method

Mixed problem (2), (3), (4) is the nonlinear evolutionary third-order
equation problem. Hence there are no any analytical methods to find the so-
lutions, then to solve the problem it is necessary to applicate the numerical
methods. There is presented the procedure for the qualitative study of the
solution in the mathematical model of small transverse nonlinear oscillations
of the vessel that allows to obtain the solution existence and uniqueness for
the problem (2), (3), (4). After the correctness justification the question of
the numerical method choice is principled only on its effectiveness.

ISSN 2304-7399. Ilpukapnarcekuii Bicauk HTIIL. Yucio. — 2022, — Ne 17(64)



MATEMATHKA TA MEXAHIKA 37

The generalized solution of the problem (2), (3), (4) in the domain 11,
will be denominated the function Q(x,t), satisfying the conditions (3), (4)
and the integral identity

9Qav ¢ 62Q v ,0Q9v

f f I_EE P xdt 0x +at Ox ox

+ [ 25Dy (x, 1)dx = 0 5)

for the arbitrary T € [0; T] and for the arbitrary respectively chosen function
V. The qualitative properties of the solution are the next:

e the functions Q and ‘Z—f are continuous on the variable t on the sec-

tion [0; T], the function ‘;—f is integrable by Lebesgue with power p

n[0;T];
2
e on the variable x the function Q with the second derivative 372 are

integrable by Lebesgue with the second degree on (0; [);

e on the variable xthe function Z—f IS integrable by Lebesgue with

power p on (0; 1).

The main result of the qualitative study of the problem solution is the
next: under the condition Q, € H3(0;1) the generalized unique solution
Q(x, t) exists for the problem (2), (3), (4) in II;.

Let’s introduce the procedure of obtaining the main result. To justify
the solution existence of the problem (2), (3), (4) it would be considered in
the domain 11, the sequence of the Gakerkin’s approximations
QV(x,t) =YV _; V() w*(x), N=1.2,..{w*} is orthonormalized in
L?(0,1) system of the linear independent elements of the space
H}(0,D) N LP(0,1), such that the linear combinations {w"*} are dense in
HE(0,1) n LP(0,1). In addition to that the functions c) are determined as
Cauchy problem solutions for the ordinary differential equations system

1T/3208 v 180N P~ 2 50N 820N 0NN 9wk
Jo [( e f—t) W + (S5 “Zﬁ)ﬁ] dx =0, (6)
where k = 1,2, ..., N, with the initial conditions

acl
c (0) = Qg —-(0) =0, (7)
Q0 (x) = Xk=1 Qdi () @*, 11Q¢" = Qollyi o,y = 0, N — 0. On the basis of

Karatheodori theorem [23, p. 28] there exists an absolutely continuous solu-
tion for the problem (6), (7), determined in a certain interval [0,t,). Due to

the evaluations obtained below, it would follow that t, =T , while number T

aQP2

Q ld dt +

N
would be determined later. Multiplying (6) by aa%‘ summing it up by k from
1to N and integrating it by t from O to 7 <T, one can get
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T 2nN N
[ <6 Q" 20 >dt ;

ot? ' ot

920N 520N aoN 920N v 1goN P

+f f [;fl 6x§t 6x§t az (?Qx axgt E 6Qt | ]dth =0. (8)
Let’s realize the transformations and estimations of the integrals in the
equality (8). As result it is possible to show that limiting function Q satisfies
the integral identity (5), conditions (3), (4), and also possesses corresponding
qualitative properties. Thus, Q is the generalized solution of the problem (2),
(3), (4). To establish uniqueness let’s denote W = Q' — Q?, where Q*', Q?
are two generalized solutions of the problem (2), (3), (4). Since

0'(x,0) = Q%(x,0), 2% . =2 20 = 0, then

f [ aW(x r)> <6W(x r)> ] f f [ azlgi(axtr)

e e e o ao
dt at at at dt

<
R dxdt <0

Hence, Q! = Q2 almost everywhere in T1,, whence it follows the solution
unigueness.

4 Model case of the elastic tube with the reaction and computer
modeling results

For the mathematical modeling of the free nonlinear small transversal
oscillations there is used long fixed on the endpoints tube under the force
action on the unit of length N;. Free oscillations of the blood flow are de-
scribed by the problem (2), (3), (4). Under these conditions the space discre-
tization of the equation (2) is realized. Let n be the quantity of the discreti-
zation components, and Ax be difference interval over the coordinate x.
Solving of the problem (2), (3), (4) results in the numerical integration on
the time interval of some difference equations system under some initial
conditions. Computer modeling of the transient processes was realized on
the model example of the analysis of the small transversal oscillations of the
elastic thin tube R = 0,003 m with the finite length. Tube length is 1 m,

blood density p = 1058 % wall thickness is h m. Tube is under the initial
pertubation of the force applied to its center in the dilation direction (that
means perpendicular to the Iine length). System parameters are the next:
N, = 50—, AX=0,1 M, ¢=1— i . Integration of the equations in the me-

chanical mode is realized via the explicit Runge-Kutta fourth order method
and implicit second order Geer method. Numerical results almost coinside.
Integration step of the explicit Runge-Kutta method is 1.10-°s, implicit Geer
method is 1-10*s. The nonlinear algebraic equations system on every step
by the variable t is solved via the simple iteration method.
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Numerical simulations were performed using the Fortran software
subroutine package gfortran.

Three modes of the object were studied. The first mode presents the
oscillations of the sufficiently small flows in the tube (the linear internal
dissipation of the mechanical energy is present only, v = 0). The second
mode presents half-filled tube (the linear internal and linear external dissipa-
tions of the mechanical energy are present, p = 2, v = 3). The third mode
presents the oscillations of the filled tube (the linear internal and the nonlin-
ear external dissipations of the mechanical energy are present, p = 4,3,
v = 3). Obviously, that these assumptions are adapted, but even in this case
with the sufficient adequacy extent there are described the real physical
processes in the object. Thus, there realized three experiments taking into
consideration mentioned modes. To confirm the validity of the system
model also were carried out two additional experiments consisting in study
of the transitional processes with different tube thickness. The first experi-
ment examined h= 0,002 m (Fig. 1a, 1b), the second experiment examined
h= 0,001 m (Fig. 2).

0.02 — Q, ms 1

[ I a2 I aQ .I4 ' o .IG ' a8 1

Figure 1a. Transient motions of the tube central component t € [0; 1],
(h = 0,002m): 1 is the first experiment, 2 is the second experiment, 3 is the
third experiment

0.0z — @ ms 4

1, s
-0.02 v T v T v T T T T 1
o ag.1 0.2 0.3 .4 0D.5

Figure 2b. Transient motions of the tube central component
(h = 0,002m): 1 is the second experiment, 2 is the third experiment at time
spant € [0;0,5]
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Analyzing the family of curves, one can see the essential influence of
the internal dissipative processes on the tube oscillations. Partly filled tube
can be treated as an object with the linear external dissipation in contradis-
tinction to the fully filled tube. Turbulent processes of the blood circulation
cause the nonlinear influence on the vessel walls. This influence depends on
the vessel wall thickness. This fact is clearly fixed on the Fig. 2. Reducing of
the tube thickness causes the increasing of the eigenoscillation frequency
and contrariwise.

This fact absolutely corresponds to the classical elasticity theory. The
oscillations damping in the tube with the less thickness are more intensive
being dependent on the internal processes in the vessel body. The nonlinear
characteristics of the blood flow are manifested stronger in the vessels with
the thin walls, that is well-understood from the physical view of point.

0 .03

0 .015

-0 015

0 I [4] I2 I U.I4 l 4] |.6 I D.IB I 1

Figure 2. Transient motions of the tube central component (h =
0,001m): 1 is the first experiment, 2 is the second experiment, 3 is the third
experiment

5 Conclusions

The elaboration of the mathematical models of the physiological proc-
esses in the able-bodied organism, and also medical problems that follow in
the sick mode of the patient, can be considered as mathematical modeling
domain that is intensively developed. Hereby the qualitative study of the
mathematical model and the next numerical modeling often are effective and
available instrument of the biological and medical problems investigation.
Complication and detail working out of the physical and mathematical prob-
lems in the mathematical modeling directly explained by the high rate devel-
opment of the numerical resources and also instrumental and diagnostics fa-
cilities. This provides the science insight on the principally new levels of the
medical and biological processes understanding. There is a lot of papers with
the fundamental scientific part in the foreground. In days to come this fun-
damental part will determine the priority of the computing procedures to sat-
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isfy highly effective medical attendance, health and active longevity of the
human.

To confirm the problem correctness in the nonlinear mathematical
model of the blood circulation in the paper are used the fundamental meth-
ods of the nonlinear boundary problems general theory. Basing on the results
of the numerical modeling there is proved the sufficient adequacy of the ob-
tained model to the real prototype. It is shown that the nonlinear medium
promotes to the quicker oscillations damping and causes the inharmonic
processes in the system. The well-known fact, that increasing of the vessel
walls thickness causes the reducing eigenoscillations frequency of the sys-
tem and contrariwise also is reaffirmed.
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Jocniooicenusn penpezenmye 00cmamui yMo8U iCHY8aHH ma €OUHOCHE
PO38’°A3KY OOHIEL 3MIWUAHOI 3a0aui, KA BUKOPUCIOBYEMbCS 6 KOJIUBANbHILL
MamemMamuyHil Mooeni Kpogoobicy nio 0i€r0 HeMiHIHUX OUCURAMUBHUX CUT
y pamkax meopii cnaokogoi mpyoxu 3 oiopakmopom. Ompumani AKicHI pe-
3yILMmamu 002pyHmo8yIoms 3acmocys8ants memooy I anvopkina 0o suwesa-
3Hauenoi 3adaui. L[i pe3ynbmamu cnpusiu 4uceibHOMY MOOeN08aHHI0 ma
3aCMOCYBAHHIO DIZHUX (IBHUX | HESAGHUX) YUCENbHUX MeMOOi8 ¥ NOOANbUUX
00CNI0AHCEHHAX OUHAMIYHUX XAPAKMEPUCUK PO38 S3KI8 )y PO32NAHYMUX Md-
MeMamuyHux MoOeax Koaueanv. B pamkax ybo2co 00cniodceHHs ducenvHe
iHme2pysanHs pieHAHb pyxy 3a memooom Pynee-Kymma 4-20 nopsaoky ma
memooom l'ipa 2-20 nopaoky 6 MoOenbHOMY 8UNAOKY O00360]ULO OYIHUMU
BNIIUB PI3HUX (PI3UKO-MEXAHIYHUX YaKMOPI6 Ha aMniimydy ma 4acmomy Ko-
JUBANLHO20 npoyecy. Bukopucmanns 2ibpuonux memoois 01 MOOent08aHHs
KOAUBAHb ) HENIHIUHOMY [30MPONHOM) NPYICHOM) cepedosunyi Ha NPUuKIaoi
Kp0o8000icy y CYOUHax 00380JUNO CHOPMYNI08AMU DI6HAHHA MEXAHIUHO20
cmany 00’€kma Ha OCHOBI eHepeemuUYHUX Ni0Xo0ie ma meopii MexaHiuHux
NOJi8 Y KOHMUHYAIbHUX CEPe00BUUYAX.

Knrwuoei cnosa: mamemamuuna mooens, HeliHIUHI KOTUBAHHS, MEMOO
Tanvopkina, 6ioghaxmop, Kpogoobie, cyouHa.
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