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The research demonstrates sufficient conditions of the existence and 

uniqueness for the solution in the oscillation mathematical model of the 
blood flow under nonlinear dissipative forces action within the theory of he-
reditary tube with biofactor. The obtained qualitative results advocate the 
application of Galerkin method to the above-mentioned problem. These re-
sults facilitated the application of different (explicit and implicit) numerical 
methods in further studies of the dynamical characteristics of solutions in 
the considered oscillation mathematical models. Numerical integration of 
the movement equations by Runge-Kutta 4th order method and Geer 2nd or-
der method in a model case within this research enabled the estimation of 
the influence of different physical and mechanical factors on the amplitude 
and frequency of the oscillation process. The use of hybrid methods for the 
oscillation modeling in the nonlinear isotropic elastic environment on the 
example of a vessel enabled the formulation of the equation of an object’s 
mechanical state based on energy approaches and the theory of mechanical 
fields in the continuous environments.  

Keywords: mathematical model, nonlinear vibrations, Galerkin 
method, biofactor, blood circulation, vessel. 

 
1 Introduction 
Modern social development trends such as the problems of human sur-

vival and healthy lifestyle preservation are closely interconnected with the 
general human problems. Under such circumstances, top priority tasks are to 
improve the quality of human life, to devise a formula for active longevity, 
and to raise the individual living standards. Physical and spiritual human 
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self-awareness should be also considered. That is why the problem of an 
adequate mathematical modeling of the processes in living organisms is the 
problem of current interest for the modern healthcare and science in general. 
A lot of actual material that was collected by practitioners and enriched by 
modern hardware investigations attracts close attention of experts in numeri-
cal modeling. Processes providing human vital activity are so complicated 
and connected that the liaison between mathematicians, biologists and doc-
tors is insistent demand for successful results. Such collaboration allows 
providing insights into regularities of human organism functioning as a 
unity, and as a result, assists an increase in human active lifestyle. At the 
same time computer modeling is progressing, and the requirements for 
mathematical models describing these processes are increasing. Almost all 
main organs and human organism systems become the object of research in 
modern physical modeling. Other areas of interest for researchers are the 
processes at the cellular and genetic levels. Many mechanisms of disease 
occurrence and course are being studied: wounds healing; oncological proc-
esses; immunological issues; drug delivery; creation and functioning of the 
artificial organs. Mathematical models of many organs and body parts – 
skin, bones, muscles, circulatory system etc, – are based on mechanical 
models which are well-known from the mechanics of deformed solids. Hy-
drodynamic staging based on the Navier-Stokes equations appear in hemo-
dynamic problems, functioning of respiratory and digestive organs, etc. The 
approaches based on the diffusion reactions and thermal conductivity equa-
tions comprise a significant part of mathematical models of thrombosis, 
stomach and skin functioning, and disease treatment by thermotherapy and 
chemotherapy. Differential equations systems form the basis of the blood 
circulation model, nerve impulses transmission, cellular interactions and 
gene networks functioning. Hybrid models, which present all aspects of 
medical and biological processes in their correlation, become more and more 
popular.  

The spectrum of the considered problems is so wide that the whole in-
vestigation review is almost impossible. Brief but sufficiently capacious re-
view of the mathematical models for many medical-biological processes, 
based on the well-known models and methods of the mechanics of continu-
ous media is presented in [1]. More deepened analysis of medical-biological 
and mathematical aspects is proposed, particularly, in [2-6].  

Mathematical modeling of the normal physiological and pathological 
processes is the most topical direction in the scientific study. The reason is 
that the modern medicine is mainly experimental science with the great em-
pirical practice of influence on the disease course by the different facilities. 
But experiments are restricted concerning to the detailed study of many 
processes I n alive organism. The most effective apparatus in this case can 
serve the mathematical modeling. Development of the apparatus means the 
construction of closed mechanical-mathematical model of the process de-
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scribing the behavior of the biological media basing on the partial differen-
tial equations. Herewith the necessary elements are such as determination of 
the rheological relationships, describing the behavior of some media part 
(equation mode, relationship between the components of the stress and strain 
tensors, etc.). The corresponding initial and boundary conditions are neces-
sary for the mathematical problem correctness as well. 

Numerical modeling of the biomechanical processes in the medical 
practice is realized using the models of mechanics of continuous media and 
numerical methods of solving the corresponding partial differential equa-
tions systems. Such modeling takes into account the development and reali-
zation of the numerical methods, adapted to the specified concrete tasks, de-
velopment of the numerical method algorithm and its program package, 
visualization of the obtained results. Examples of the successful use of the 
mentioned mathematical methods are presented in [7] to solve the problems 
of the nonlinear dynamics in the chemical kinetics. To study some medical 
processes there is necessary to solve numerically the differential equations 
systems [6]. Biological and medical problems involving to numerical solu-
tions of the partial differential equations are described in the papers [5, 6]. 
Rheological relationships for the biological continuous media are developed 
in [8, 9]. The mechanical model of the heart was considered in [10-14]. De-
scription of the simplest mathematical models of the circulatory system and 
heart one can find in [15-17]. Circulatory system consisting from the large 
and lesser circulation, possesses very serious and different functions, that is 
why their modeling in the normal and pathological conditions, is very impor-
tant task in medicine. For today the most adequacy to the real physical circu-
latory systems there are dynamical models of the pulsating flows of the in-
compressible fluids in the elastic tubes system. 

2 Problem statement. Mathematical models of blood circulation 
within the theory of multilayer elastic cylindrical tube 

2.1 Linear mathematical models of hereditary biofactor tube 
Study of the wave propagation process in the deformed tubes with the 

liquid leaking through the tube is widespread applicated [18]. These prob-
lems are actual, in particular, in case of blood circulation modeling in alive 
organisms. Problems of blood flows and oscillations propagation in large 
blood vessels are very important to understand the functioning, regulation 
and control the cardiovascular system. As follows, diagnostics, surgery and 
prosthetics are bound up the hemodynamics [19, 20]. In the mathematical 
modeling of blood flow there is considered pulsed systaltic blood flow in the 
multilayer elastic or viscous elastic tube with the variable cross-section. 
More complicated mathematical models of blood circulation in the tubes that 
possess reaction on the external action (biofactor). This type models describe 
blood circulation in arteries and veins. Proposed mathematical models are 
obtained using continuum media mechanics and hereditary theory approach 
[19, 20]. 
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There is given a multilayer cylindrical tube (vessel) with radius 𝑅𝑅(𝑥𝑥), 
length 𝑙𝑙 (finite of semi-infinite) and depth h. This tube consists of 𝑛𝑛 different 
by depth layers 𝛿𝛿𝑠𝑠 (ℎ = ∑ 𝛿𝛿𝑠𝑠𝑛𝑛

𝑠𝑠=1 ), which are connected by common circular 
concentric surfaces between them. Hereby, 𝑅𝑅(𝑥𝑥) is monotonically decreas-
ing (nonincreasing) function. Hydrodynamic pressure on the vessels walls is 
described by formula 

𝑃𝑃(𝑥𝑥, 𝑡𝑡) = ∑ 𝛿𝛿𝑠𝑠𝐸𝐸𝑠𝑠�𝑊𝑊(𝑥𝑥, 𝑡𝑡) − ∫ 𝛤𝛤𝑠𝑠(𝜃𝜃) ⋅ 𝑊𝑊(𝑥𝑥, 𝑡𝑡 − 𝜃𝜃)𝑑𝑑𝑑𝑑∞
0 �𝑛𝑛

𝑠𝑠=1 , 
where: 

• in case of the linear elasticity law  𝜎𝜎𝑠𝑠 = 𝑒𝑒𝑠𝑠𝐸𝐸𝑠𝑠,  𝜎𝜎𝑠𝑠 is stress, 𝑒𝑒𝑠𝑠  is 
deformation in the corresponding 𝑠𝑠 – layer; 

• in  case of  the linear hereditary elasticity law 
𝜎𝜎𝑠𝑠 = 𝑒𝑒𝑠𝑠𝐸𝐸𝑠𝑠∗, 𝐸𝐸𝑠𝑠∗ = 𝐸𝐸𝑠𝑠(1 − 𝛤𝛤𝑠𝑠∗),  

𝛤𝛤𝑠𝑠∗ is stress relieving operator, 𝛤𝛤𝑠𝑠∗𝑓𝑓 = ∫ 𝛤𝛤𝑠𝑠(𝜃𝜃)∞
0 𝑓𝑓(𝑡𝑡 − 𝜃𝜃)𝑑𝑑𝑑𝑑; 

• 𝑊𝑊(𝑥𝑥, 𝑡𝑡) is radial displacement of the wall for the multilayer 
package as a whole, it being known that  

𝜎𝜎𝑠𝑠 = 𝐸𝐸𝑠𝑠
𝑊𝑊
𝑅𝑅

  or 𝜎𝜎𝑠𝑠 = 𝐸𝐸𝑠𝑠∗
𝑊𝑊
𝑅𝑅

 
in the linear elasticity and the linear heredity cases, respectively.  

• the circular intension 𝑁𝑁 is determined by formula 𝑁𝑁 = ∑ 𝛿𝛿𝑠𝑠𝜎𝜎𝑠𝑠𝑛𝑛
𝑠𝑠=1 . 

The next formulae are valid in the linear elasticity and the linear 
heredity cases, respectively,  

𝑃𝑃(𝑥𝑥, 𝑡𝑡) = 𝛼𝛼𝑛𝑛
𝑊𝑊
𝑅𝑅2 

or  
𝑃𝑃(𝑥𝑥, 𝑡𝑡) = 1

𝑅𝑅2 ∑ 𝛿𝛿𝑠𝑠𝐸𝐸𝑠𝑠�𝑊𝑊(𝑥𝑥, 𝑡𝑡) − ∫ 𝛤𝛤𝑠𝑠(𝜃𝜃) ⋅ 𝑊𝑊(𝑥𝑥, 𝑡𝑡 − 𝜃𝜃)𝑑𝑑𝑑𝑑∞
0 �𝑛𝑛

𝑠𝑠=1 , 
𝛼𝛼𝑛𝑛  is some positive constant, depending on the elastic characteristics of the 
vessels walls and layers quantity.  

More complicated model predicts the reaction of the vessels walls on 
the external action [19]. This mathematical model is based on the hypothesis 
that the body (vessel) material   possesses a property to react on the external 
irritants changing its elastic characteristics. According to this hypothesis true 
stress 𝜎𝜎𝑠𝑠 in every layer at that time instant equals to the sum of passive stress 
𝜎𝜎𝑠𝑠0 and the reaction (biological factor) 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗ , besides that  𝜎𝜎𝑠𝑠 = 𝜎𝜎𝑠𝑠0 + 
+𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗ (𝑡𝑡), where the biofactor depends on the applied intension value in 
time moment, directly preceding to the given one. Thus, 0 < 𝐴𝐴𝑠𝑠 < 1, τ  is 
time delay of the reaction, 𝜏𝜏 ≪ 𝑡𝑡. Assume that 𝜎𝜎𝑠𝑠 = (1 − 𝜎𝜎𝑠𝑠)𝜎𝜎𝑠𝑠0 + 𝐴𝐴𝑠𝑠𝜏𝜏

𝜕𝜕𝜎𝜎𝑠𝑠0

𝜕𝜕𝜕𝜕
. 

As above, for the linear elasticity 
𝜎𝜎𝑠𝑠0 = 𝐸𝐸𝑠𝑠

𝑊𝑊
𝑅𝑅

, 
and for the linear heredity  

𝜎𝜎𝑠𝑠0 = 𝐸𝐸𝑠𝑠∗
𝑊𝑊
𝑅𝑅

. 
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Taking into consideration all mentioned about the vessels walls inten-
sions in this mathematical model, one can accept that 

𝑃𝑃(𝑥𝑥, 𝑡𝑡) =
1
𝑅𝑅2 �𝛿𝛿𝑠𝑠𝐸𝐸𝑠𝑠 �(1 − 𝐴𝐴𝑠𝑠)𝑊𝑊(𝑥𝑥, 𝑡𝑡) + 𝐴𝐴𝑠𝑠𝜏𝜏

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝑛𝑛

𝑠𝑠=1

 

for the linear elasticity case and 
 𝑃𝑃(𝑥𝑥, 𝑡𝑡) = 1

𝑅𝑅2 ∑ 𝛿𝛿𝑠𝑠𝐸𝐸𝑠𝑠∗ �(1 − 𝐴𝐴𝑠𝑠)𝑊𝑊(𝑥𝑥, 𝑡𝑡) + 𝐴𝐴𝑠𝑠𝜏𝜏
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� �𝑊𝑊(𝑥𝑥, 𝑡𝑡) −𝑛𝑛

𝑠𝑠=1

−0∞𝛤𝛤𝑠𝑠𝜃𝜃⋅𝑊𝑊𝑥𝑥,𝑡𝑡−𝜃𝜃𝑑𝑑𝜃𝜃    (1) 
for the linear heredity case. 

2.2 Hemodynamics equation in the linear mathematical models of 
blood circulation  

Notice is that from the formula (1) one can get different mathematical 
models of the deformed solid body, namely: 

•  linear elastic tube model (𝐴𝐴𝑠𝑠 = 𝛤𝛤𝑠𝑠 = 0), 
•  linear hereditary tube model (𝐴𝐴𝑠𝑠 = 0, 𝛤𝛤𝑠𝑠 ≠ 0), 
• linear elastic tube with the reaction (biofactor) model  

(𝐴𝐴𝑠𝑠 ≠ 0, 𝛤𝛤𝑠𝑠 = 0). 
Hemodynamics equation differs in every case. 
A. The linear elastic tube [19]. Oscillations equation of the blood 

flow is the next: 
𝜕𝜕
𝜕𝜕𝜕𝜕
� 1
𝑅𝑅3

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 2𝜌𝜌

𝑅𝑅2 �
𝜕𝜕2𝑄𝑄
𝜕𝜕𝑡𝑡2 + 8𝜒𝜒

𝑅𝑅2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 0, 

where 𝑄𝑄 = 𝑆𝑆𝑆𝑆is blood consumption, 𝑆𝑆(𝑥𝑥) = 𝜋𝜋𝑅𝑅2(𝑥𝑥) is area of the tube 
cross-section, 𝑈𝑈(𝑥𝑥, 𝑡𝑡) is blood averaged flow rate, 𝜌𝜌 is blood density, 𝜒𝜒 is 
coefficient of kinematic viscosity.  

B. The linear hereditary tube [19]. Oscillations equation is: 
∑ 𝛿𝛿𝑠𝑠𝐸𝐸𝑠𝑠

𝜕𝜕
𝜕𝜕𝜕𝜕
� 1
𝑅𝑅3 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− ∫ 𝛤𝛤𝑠𝑠(𝜃𝜃) ⋅ 𝜕𝜕𝜕𝜕(𝑥𝑥 ,𝑡𝑡−𝜃𝜃)

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑∞

0 �� − 2𝜌𝜌
𝑅𝑅2 �

𝜕𝜕2𝑄𝑄
𝜕𝜕𝑡𝑡2 + 8𝜒𝜒

𝑅𝑅2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 0𝑛𝑛

𝑠𝑠=1 . 
C. The linear hereditary biofactor tube [20]. Oscillations equation is: 

∑ 𝛿𝛿𝑠𝑠𝐸𝐸𝑠𝑠
𝜕𝜕
𝜕𝜕𝜕𝜕
� 1
𝑅𝑅3 �(1 − 𝐴𝐴𝑠𝑠) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝐴𝐴𝑠𝑠𝜏𝜏

𝜕𝜕2𝑄𝑄
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�� − 2𝜌𝜌
𝑅𝑅2 �

𝜕𝜕2𝑄𝑄
𝜕𝜕𝑡𝑡2 + 8𝜒𝜒

𝑅𝑅2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 0𝑛𝑛

𝑠𝑠=1 . 

Solutions of these equations can be found as finite sum of the main os-
cillation and the higher harmonics, using the harmonic analysis methods. 

2.3 The nonlinear mathematical model of the hereditary biofactor 
tube  

To study complicated impulses, specific to the circulatory system, it is 
often necessary to consider the nonlinear models instead the linear ones. It is 
impossible to find the exact solution in this case. Background of the nonlin-
ear mathematical models study is numerical (computer) modeling. Applica-
tion of this approach also can’t be universal study method due to the other 
problems, for example, procedure convergence, numerical method’s stabil-
ity, accuracy of computation. That’s why it is reasonable to develop hybrid 
methods to study the nonlinear oscillations mathematical models combining 
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both the qualitative and numerical approaches [21, 22]. It is realized thor-
ough qualitative description of the solution’s characteristics respectively to 
the problem. Usually, it is based on Galerkin method or on its different 
modifications. After that the numerical methods are applicated to find the 
approximate solutions. Herewith choice of the numerical method is of no 
principle from the theoretical aspect, and can be determined by effectiveness 
of the numerical realization only.  

Using all mentioned above, let’s consider the oscillations equation of 
blood flow in the nonlinear isotropic environment. It would be studied the 
problem of the blood flow oscillations equation within the mathematical 
model of the linear hereditary tube with biofactors and nonlinear external 
dissipative forces in the form  

𝜕𝜕2𝑄𝑄
𝜕𝜕𝑡𝑡2 = 𝑎𝑎2 𝜕𝜕2𝑄𝑄

𝜕𝜕𝑥𝑥2 + 𝜁𝜁
𝜌𝜌𝑙𝑙

𝜕𝜕3𝑄𝑄
𝜕𝜕𝑥𝑥2𝜕𝜕𝜕𝜕

− 𝜈𝜈
𝜌𝜌𝑙𝑙
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑝𝑝−2 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,   (2) 

where 
 
𝑎𝑎 = �𝑁𝑁𝑙𝑙

𝜌𝜌𝑙𝑙
, and  𝜌𝜌𝑙𝑙  is the linear blood density in the finite tube with 

fixed length 𝑙𝑙, 𝑁𝑁𝑙𝑙  is uniformly distributed by tube length force, causing the 
initial oscillations, 𝜈𝜈, 𝜁𝜁 are the coefficients of the external and internal dissi-
pations of the environment, respectively, 𝑝𝑝 > 2. The nonlinear oscillations 
of the tube with the constant radius of the cross-section R  in the case of the 
initial amplitude replacement and the initial zero rate would be considered. 
The case of rigidly fixed by length tube also would be considered. It is rea-
sonable to study the equation (2) in the rectangle 𝛱𝛱𝑇𝑇 = [0; 𝑙𝑙] × [0;𝑇𝑇] mixed 
problem with the initial conditions  

𝑄𝑄(𝑥𝑥, 0) = 𝑄𝑄0(𝑥𝑥),  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑥𝑥, 0) = 0    (3) 
and the boundary conditions 

𝑄𝑄(0, 𝑡𝑡) = 𝑄𝑄(𝑙𝑙, 𝑡𝑡) = 0.     (4) 
For the case  𝑝𝑝 = 2 the equation (2) is considered in the previous chapter 
within the linear elastic tube with the reaction (biofactor) model. In this pa-
per the linear model is involved by the nonlinear factors.   

Discussed procedure for the nonlinear mathematical model of blood 
circulation (2), (3), (4) would be illustrated in the next chapters. 

3 Study of the problem solution existence and uniqueness via 
Galerkin method 

Mixed problem (2), (3), (4) is the nonlinear evolutionary third-order 
equation problem. Hence there are no any analytical methods to find the so-
lutions, then to solve the problem it is necessary to applicate the numerical 
methods. There is presented the procedure for the qualitative study of the 
solution in the mathematical model of small transverse nonlinear oscillations 
of the vessel that allows to obtain the solution existence and uniqueness for 
the problem (2), (3), (4). After the correctness justification the question of 
the numerical method choice is principled only on its effectiveness.  
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The generalized solution of the problem (2), (3), (4) in the domain TΠ  
will be denominated the function ( , )Q x t , satisfying the conditions (3), (4)  
and the integral identity 

� � �−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜁𝜁
𝜌𝜌𝑙𝑙
𝜕𝜕2𝑄𝑄
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑎𝑎2 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜈𝜈
𝜌𝜌𝑙𝑙
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑝𝑝−2 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑉𝑉�

𝑙𝑙

0

𝜏𝜏

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 

+∫ 𝜕𝜕𝜕𝜕(𝑥𝑥 ,𝜏𝜏)
𝜕𝜕𝜕𝜕

𝑙𝑙
0 𝑉𝑉(𝑥𝑥, 𝜏𝜏)𝑑𝑑𝑑𝑑 = 0        (5) 

for the arbitrary 𝜏𝜏 ∈ [0;𝑇𝑇] and for the arbitrary respectively chosen function 
𝑉𝑉. The qualitative properties of the solution are the next:  

• the functions  𝑄𝑄 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 are continuous on the variable 𝑡𝑡 on the sec-

tion [0;𝑇𝑇], the function 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is integrable by Lebesgue with power 𝑝𝑝 
on [0;𝑇𝑇];  

• on the variable 𝑥𝑥 the function 𝑄𝑄 with the second derivative  𝜕𝜕
2𝑄𝑄
𝜕𝜕𝑥𝑥2  are 

integrable by Lebesgue with the second degree on (0; 𝑙𝑙);  
• on the variable x the function 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 is integrable by Lebesgue with 

power 𝑝𝑝 on (0; 𝑙𝑙). 
The main result of the qualitative study of the problem solution is the 

next: under the condition 𝑄𝑄0 ∈ 𝐻𝐻0
1(0; 𝑙𝑙) the generalized unique solution 

𝑄𝑄(𝑥𝑥, 𝑡𝑡) exists for the problem (2), (3), (4) in 𝛱𝛱𝑇𝑇 .   
Let’s introduce the procedure of obtaining the main result. To justify 

the solution existence of the problem (2), (3), (4) it would be considered in 
the domain TΠ  the sequence of the Gakerkin’s approximations  
𝑄𝑄𝑁𝑁(𝑥𝑥, 𝑡𝑡) = ∑ 𝑐𝑐𝑘𝑘𝑁𝑁(𝑡𝑡)𝑁𝑁

𝑘𝑘=1 𝜔𝜔𝑘𝑘(𝑥𝑥), 𝑁𝑁 = 1,2, …,{𝜔𝜔𝑘𝑘} is orthonormalized in 
𝐿𝐿2(0, 𝑙𝑙) system of the linear independent elements of the space 
𝐻𝐻0

1(0, 𝑙𝑙) ∩ 𝐿𝐿𝑝𝑝(0, 𝑙𝑙), such that the linear combinations {𝜔𝜔𝑘𝑘} are dense in 
𝐻𝐻0

1(0, 𝑙𝑙) ∩ 𝐿𝐿𝑝𝑝(0, 𝑙𝑙). In addition to that the functions 𝑐𝑐𝑘𝑘𝑁𝑁 are determined as 
Cauchy problem solutions for the ordinary differential equations system  

∫ ��𝜕𝜕
2𝑄𝑄𝑁𝑁

𝜕𝜕𝑡𝑡2 + 𝜈𝜈
𝜌𝜌𝑙𝑙
�𝜕𝜕𝑄𝑄

𝑁𝑁

𝜕𝜕𝜕𝜕
�
𝑝𝑝−2 𝜕𝜕𝑄𝑄𝑁𝑁

𝜕𝜕𝜕𝜕
�𝜔𝜔𝑘𝑘 + � 𝜁𝜁

𝜌𝜌𝑙𝑙

𝜕𝜕2𝑄𝑄𝑁𝑁

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+ 𝑎𝑎2 𝜕𝜕𝑄𝑄𝑁𝑁

𝜕𝜕𝜕𝜕
� 𝜕𝜕𝜔𝜔

𝑘𝑘

𝜕𝜕𝜕𝜕
�𝑙𝑙

0 𝑑𝑑𝑑𝑑 = 0,      (6) 
where 𝑘𝑘 = 1,2, … ,𝑁𝑁, with the initial conditions  

𝑐𝑐𝑘𝑘𝑁𝑁(0) = 𝑄𝑄0,𝑘𝑘
𝑁𝑁 ,  𝜕𝜕𝑐𝑐𝑘𝑘

𝑁𝑁

𝜕𝜕𝜕𝜕
(0) = 0,                             (7) 

𝑄𝑄0
𝑁𝑁(𝑥𝑥) = ∑ 𝑄𝑄0,𝑘𝑘

𝑁𝑁 (𝑥𝑥)𝑁𝑁
𝑘𝑘=1 𝜔𝜔𝑘𝑘 ,  ‖𝑄𝑄0

𝑁𝑁 − 𝑄𝑄0‖𝐻𝐻0
1(0,𝑙𝑙) → 0,  . On the basis of 

Karatheodori theorem [23, p. 28] there exists an absolutely continuous solu-
tion for the problem (6), (7), determined in a certain interval . Due to 
the evaluations obtained below, it would follow that , while number 𝑇𝑇 

would be determined later. Multiplying (6) by 𝜕𝜕𝑐𝑐𝑘𝑘
𝑁𝑁

𝜕𝜕𝜕𝜕
, summing it up by 𝑘𝑘 from 

1 to 𝑁𝑁 and integrating it by 𝑡𝑡 from 0 to , one can get  

N →∞

[ )00, t

0t T=

Tτ ≤



МАТЕМАТИКА ТА МЕХАНІКА 

 
ISSN 2304-7399. Прикарпатський вісник НТШ. Число. – 2022. – № 17(64) 

38 

� �
𝜕𝜕2𝑄𝑄𝑁𝑁

𝜕𝜕𝑡𝑡2 ,
𝜕𝜕𝑄𝑄𝑁𝑁

𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑 +

𝜏𝜏

0
 

+∫ ∫ � 𝜁𝜁
𝜌𝜌𝑙𝑙

𝜕𝜕2𝑄𝑄𝑁𝑁

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕2𝑄𝑄𝑁𝑁

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+ 𝑎𝑎2 𝜕𝜕𝑄𝑄𝑁𝑁

𝜕𝜕𝜕𝜕
𝜕𝜕2𝑄𝑄𝑁𝑁

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+ 𝜈𝜈

𝜌𝜌𝑙𝑙
�𝜕𝜕𝑄𝑄

𝑁𝑁

𝜕𝜕𝜕𝜕
�
𝑝𝑝
�𝑙𝑙

0
𝜏𝜏

0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.  (8) 
Let’s realize the transformations and estimations of the integrals in the 

equality (8). As result it is possible to show that limiting function 𝑄𝑄 satisfies 
the integral identity (5), conditions (3), (4), and also possesses corresponding 
qualitative properties. Thus, 𝑄𝑄 is the generalized solution of the problem (2), 
(3), (4). To establish uniqueness let’s denote 𝑊𝑊 = 𝑄𝑄1 − 𝑄𝑄2, where 𝑄𝑄1, 𝑄𝑄2 
are two generalized solutions of the problem (2), (3), (4). Since  
𝑄𝑄1(𝑥𝑥, 0) = 𝑄𝑄2(𝑥𝑥, 0), 𝜕𝜕𝑄𝑄

1(𝑥𝑥 ,0)
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑄𝑄2(𝑥𝑥 ,0)
𝜕𝜕𝜕𝜕

= 0, then  

� ��
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝜏𝜏)

𝜕𝜕𝜕𝜕
�

2

+ �
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝜏𝜏)

𝜕𝜕𝜕𝜕
�

2

� 𝑑𝑑𝑑𝑑 + � � ��
𝜕𝜕2𝑊𝑊(𝑥𝑥, 𝜏𝜏)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�
2
�

𝑙𝑙

0

𝜏𝜏

0

𝑙𝑙

0
× 

�× ��
𝜕𝜕𝑄𝑄1

𝜕𝜕𝜕𝜕
�
𝑝𝑝−2 𝜕𝜕𝑄𝑄1

𝜕𝜕𝜕𝜕
      − �

𝜕𝜕𝑄𝑄2

𝜕𝜕𝜕𝜕
�
𝑝𝑝−2 𝜕𝜕𝑄𝑄2

𝜕𝜕𝜕𝜕
�  �

𝜕𝜕𝑄𝑄1

𝜕𝜕𝜕𝜕
−
𝜕𝜕𝑄𝑄2

𝜕𝜕𝜕𝜕
�� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 0 

Hence, 𝑄𝑄1 = 𝑄𝑄2 almost everywhere in TΠ , whence it follows the solution 
uniqueness. 

4 Model case of the elastic tube with the reaction and computer 
modeling results 

For the mathematical modeling of the free nonlinear small transversal 
oscillations there is used long fixed on the endpoints tube under the force 
action on the unit of length 𝑁𝑁𝑙𝑙 . Free oscillations of the blood flow are de-
scribed by the problem (2), (3), (4). Under these conditions the space discre-
tization of the equation (2) is realized. Let 𝑛𝑛 be the quantity of the discreti-
zation components, and 𝛥𝛥𝛥𝛥 be difference interval over the coordinate 𝑥𝑥. 
Solving of the problem (2), (3), (4) results in the numerical integration on 
the time interval of some difference equations system under some initial 
conditions. Computer modeling of the transient processes was realized on 
the model example of the analysis of the small transversal oscillations of the 
elastic thin tube 𝑅𝑅 = 0,003 m with the finite length. Tube length is 1 m,  
blood density 𝜌𝜌 = 1058 kg

𝑚𝑚3, wall thickness is h  m. Tube is under  the initial 
pertubation of the force applied to its center in the dilation  direction (that 
means perpendicular to the line length). System parameters are the next: 
𝑁𝑁𝑙𝑙 = 50 𝑁𝑁

𝑚𝑚
, 0,1x∆ = m, 1ζ =

kg⋅𝑚𝑚
𝑠𝑠

. Integration of the equations in the me-
chanical mode is realized via the explicit Runge-Kutta fourth order method 
and implicit second order Geer method. Numerical results almost coinside.  
Integration step of the explicit Runge-Kutta method is 51 10−⋅ s, implicit Geer 
method is 41 10−⋅ s. The nonlinear algebraic equations system on every step 
by the variable 𝑡𝑡 is solved via the simple iteration method.  
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Numerical simulations were performed using the Fortran software 
subroutine package gfortran. 

Three modes of the object were studied. The first mode presents the 
oscillations of the sufficiently small flows in the tube (the linear internal 
dissipation of the mechanical energy is present only, 𝜈𝜈 = 0). The second 
mode presents half-filled tube (the linear internal and linear external dissipa-
tions of the mechanical energy are present, 𝑝𝑝 = 2, 𝜈𝜈 = 3). The third mode 
presents the oscillations of the filled tube (the linear internal and the nonlin-
ear external dissipations of the mechanical energy are present, 𝑝𝑝 = 4,3, 
𝜈𝜈 = 3). Obviously, that these assumptions are adapted, but even in this case 
with the sufficient adequacy extent there are described the real physical 
processes in the object. Thus, there realized three experiments taking into 
consideration mentioned modes. To confirm the validity of the system 
model also were carried out two additional experiments consisting in study 
of the transitional processes with different tube thickness. The first experi-
ment examined h= 0,002 m (Fig. 1a, 1b), the second experiment examined 
h= 0,001 m (Fig. 2).  

 

 
Figure 1a. Transient motions of the tube central component 𝑡𝑡 ∈ [0; 1], 

(ℎ = 0,002m): 1 is the first experiment, 2 is the second experiment, 3 is the 
third experiment 
 

 
Figure 2b. Transient motions of the tube central component  

(ℎ = 0,002m): 1 is the second experiment, 2 is the third experiment at time 
span 𝑡𝑡 ∈ [0; 0,5] 
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Analyzing the family of curves, one can see the essential influence of 
the internal dissipative processes on the tube oscillations. Partly filled tube 
can be treated as an object with the linear external dissipation in contradis-
tinction to the fully filled tube. Turbulent processes of the blood circulation 
cause the nonlinear influence on the vessel walls. This influence depends on 
the vessel wall thickness. This fact is clearly fixed on the Fig. 2. Reducing of 
the tube thickness causes the increasing of the eigenoscillation frequency 
and contrariwise. 

This fact absolutely corresponds to the classical elasticity theory. The 
oscillations damping in the tube with the less thickness are more intensive 
being dependent on the internal processes in the vessel body. The nonlinear 
characteristics of the blood flow are manifested stronger in the vessels with 
the thin walls, that is well-understood from the physical view of point. 

 

 
Figure 2: Transient motions of the tube central component (ℎ =

0,001m): 1 is the first experiment, 2 is the second experiment, 3 is the third 
experiment 

 
5 Conclusions 
The elaboration of the mathematical models of the physiological proc-

esses in the able-bodied organism, and also medical problems that follow in 
the sick mode of the patient, can be considered as mathematical modeling 
domain that is intensively developed. Hereby the qualitative study of the 
mathematical model and the next numerical modeling often are effective and 
available instrument of the biological and medical problems investigation. 
Complication and detail working out of the physical and mathematical prob-
lems in the mathematical modeling directly explained by the high rate devel-
opment of the numerical resources and also instrumental and diagnostics fa-
cilities. This provides the science insight on the principally new levels of the 
medical and biological processes understanding. There is a lot of papers with 
the fundamental scientific part in the foreground. In days to come this fun-
damental part will determine the priority of the computing procedures to sat-
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isfy highly effective medical attendance, health and active longevity of the 
human.  

To confirm the problem correctness in the nonlinear mathematical 
model of the blood circulation in the paper are used the fundamental meth-
ods of the nonlinear boundary problems general theory. Basing on the results 
of the numerical modeling there is proved the sufficient adequacy of the ob-
tained model to the real prototype. It is shown that the nonlinear medium 
promotes to the quicker oscillations damping and causes the inharmonic 
processes in the system. The well-known fact, that increasing of the vessel 
walls thickness causes the reducing eigenoscillations frequency of the sys-
tem and contrariwise also is reaffirmed. 
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Дослідження репрезентує достатні умови існування та єдиності 

розв’язку однієї змішаної задачі, яка використовується в коливальній 
математичній моделі кровообігу під дією нелінійних дисипативних сил 
у рамках теорії спадкової трубки з біофактором. Отримані якісні ре-
зультати обгрунтовують застосування методу Гальоркіна до вищеза-
значеної задачі. Ці результати сприяли чисельному моделюванню та 
застосуванню різних (явних і неявних) чисельних методів у подальших 
дослідженнях динамічних характеристик розв’язків у розглянутих ма-
тематичних моделях коливань. В рамках цього дослідження чисельне 
інтегрування рівнянь руху за методом Рунге-Кутта 4-го порядку та 
методом Гіра 2-го порядку в модельному випадку дозволило оцінити 
вплив різних фізико-механічних факторів на амплітуду та частоту ко-
ливального процесу. Використання гібридних методів для моделювання 
коливань у нелінійному ізотропному пружному середовищі на прикладі 
кровообігу у судинах дозволило сформулювати рівняння механічного 
стану об’єкта на основі енергетичних підходів та теорії механічних 
полів у континуальних середовищах. 
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