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1. Introduction and formulation of main results
The following fraction is called Gauss continued fraction [1, 2]

1+Da”Z, ze(C, (1)
n=l1
where
wy LR eben) o (ben)e=atn) o
(c+2n)(c+2n+1) (c+2n—1)(c+2n)

and a,b,c are any complex numbers, such that ¢ ¢ {0;,~1;-2,...}. Let us no-
tice that if at least one of the numbers a,b belongs to the set {0,—1,-2,...},
then the fraction (1) reduces to the ratio of polynomials.

The fraction (1) arises from the expansion of the ratio of Gauss hyper-
geometric functions

F(ab;c z) 3)
F(a,b+1l;,c+1;z)

into continued fraction [2]. Let us recall [3] that Gauss function F(a,b,c,z)
is given inside the disk { ze C:|z|<1} by the sum of Gauss hypergeomet-
ric series
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o0 n
F(ab;c;z)=, Fi(a,b;c;z)= ZMZ—, (4)
0 (c)n n!
where a,b,ceC, c ¢ {0;—1;—2;. . .}, ()n are Pochhammer symbols:
(a)o =1, (a)n =a(a+1)-...-(a+n-1), neN.
In similar way from (4) we can obtain following equalities
F(a,b;c;z)=F(a,b+1;c+ 1,'Z)—MZF(CI +1,b+1;c+2;z), (5
c(c+1)
F(a,b+l,c+1;z)=F(a+1,b+1;c+2;z)—-
_(b+l)(c—a+l)
(c+1)(c+2)
From equalities (5), (6) we obtain the following recurrent relations

zF(a+1,b+2;¢c+3,z), (6)

w(z)=1+-nt1Z_ 50, 7)
Wn+1(Z
where
Wy 1(2) = F(a+nb+n+1l,c+2n+l;z) 0>0
2ntl Fl(a+n+lb+n+lc+2n+2;z)" 7
Wy, (2) = F(a+nb+n;c+2n;z) N>l )

F(a+nb+n+l,c+2n+l;z) ’
and a,, n=1, are defined by equations (2). Then from equalities (7), (8) we
obtain

F(ab;c;z) a,z

=1+
F(a,b+1l;c+1;z) 1+

14 nZ
Wy(2)
So we get a continued fraction expansion of the ratio (3) (see [2])
F(ab;c;z) 14 p GZ
F(a,b+1;c+1;z) n=1 1
The sequence of functions

n apz
fo(z)=1, fn(Z)=1+/£lT
is called the sequence of approximants of fraction (1).

The Gauss fraction (1) is said to converge (uniformly) to the function

, neN, 9

G(z) in the set M , if the sequence of its approximants { f,(z )}, con-
verges (uniformly) on M to G(z) as n— oo. The interesting question is:
for which a,b,c and for which value z fraction (9) converges to the relation

3).
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In the work [2] it was established that for a,b,ceC,
c¢ {O;—l;— 2;.. .}, Gauss continued fraction (1) converges to the ratio (3) in
the cut plane P={z e C :|arg(1-z)|< m} and convergence is uniformly on

every compact subset of {z eP:G(z)+ oo}, where G(z)= lim f,(z).
n—»0
In present work the results of the work [2] are transferred to the case

when the parameters a,b,c,z of the Gauss continued fraction (1) are p -adic

numbers and the convergence of sequence of approximants (9) is considered
in the p -adic norm. The main result of this work consists in the following

propositions:

Theorem 1. Let a,b,c e Qp be such that

lal,#cl,, |bl,#cl,, min{lal,|bl,}>1, |c|,>max{|al,|b],}.
Then fraction (1) wuniformly converges in the p-adic disk
{zeQ, | z[,<1}.

Theorem 2. Let a,b,c e Qp be such that
lal,#lcly, [bl,# cly, minflal,|bl, }>1, [c|,>max{|al,|b]|,|ab],}.
Then Gauss fraction uniformly converges in the p-adic disk
{Z €Q, :|z],< pl/(l_p)} to the ratio (3).

2. Basic concepts of p-adic numbers

In order to prove Theorems 1, 2 let us recall some concepts of the the-
ory of p-adic numbers [4]. Let us define the p-adic norm in the set of rational
numbers Q by the rule

1
|O|p:09 |x|p:ma XEQ\{O}’
p P
where p is the prime number, and where the p-adic ordinal ord ,x of the ra-
tional number x is defined by means of the equality

max{meZ+ :xEO(modpm)} if xeZ x#0,

ord ,x =
7] ordja-ord,p, if x=2, abezifo)

The field of p-adic numbers, denoted by the symbol Q,,, is defined as
the completion of the field of rational numbers Q with respect to the p-adic
norm introduced above. For the p -adic norm the strengthened triangle ine-
quality holds, namely

| x+y[,<max{|x|,|y|,}

This inequality implies the principle of isosceles triangle [4] for the

field Q,,, which consists in that for any x,y € Q,, the alternative holds: ei-

ther [x|,= y |, or [x+ y|,<max{|x|,[y]|, },if |x|,# yI,.
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3. Properties of the partial numerators
Now we shall obtain properties of a,, n>1, defined by the equality

(2). Letus denote: D(r)={z€Q, :|z|,<r}, r>0.
Lemma 1. If abceQ,, |a|,#c|,, |b|,#c|,, min{lal,|b|,}>1,
|cl,>max{|al,,|b|,}, then following equalities hold:

|ay [,<maxf]al,.|bl, }/cl,<1, n>1.

Proof. As [n|,<1 for any n e N, then from the conditions of Lemma
1 together with the principle of the isosceles triangle [4] it follows that
la+n|,=al,, |b+n|,=b|,, |c+n|,=c|,, neN,

lc—a+nl|,=cl|,, |[c-b+n|,Hc|,, neN. (10)

From the inequality |c|,>max{|al,,[b],} together with the relations (2),
(10) we obtain that the following relations hold

|aanirlp=lal, /lel,smax{{al,|bl, }/]c|,<l, n=0,

|ay, |,=101, /| c|,smax{|al,|bl, }/|c|,<1, n>1.

Lemma is proved.

4. Properties of the canonical numerators and denominators

Let us define p-adic norms of the canonical numerators and denomina-
tors of the Gauss fraction. Let us remark that the recurrence sequences of

functions {4, (z){"_,, {B,(z ), which are defined from the equalities
Ao(z)=1, A(z)=az+1, By(z)=1, By(z)=1,
A,(z)= A4, 1(2)+a,z4, »(z), B,(z)=B, (z)+a,zB, »(z), n=2,(11)

are the canonical numerators and denominators of approximants of the
Gauss fraction, so that

fu(z)=A,(2)/B,(z), neNU{0}.
Lemma 2. Let a,b,ceQ,,, |al|,#c|,, |b],#|c|,, min{lal,|b|,}>1,
|cl,>max{|al,|b|,}. If z€ D(1) then
|An(z)|p:1, |Bn(z)|p =1, neNuU{0;. (12)
Proof. We shall apply the method of mathematical induction on n. It
is obvious that |A0(z)|p =1, Bo(z)|p =1,

all ze D(1) we obtain  |az|,<q [,<1, therefore from the principle of

B, (z)|p =1. From Lemma 1 for

isosceles triangle we obtain (4,(z ) =1. Thus the equalities (12) are true for
1=/p

n=0,1 and the base of induction is established.
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We assume that equalities (12) are true for all n <k, where k£ >3.
Then from Lemma 1 and from the inductive hypothesis it follows that for all
zeD(1)

| A1 (2) =1, oz o (2) = az <l g |, <1,

| Bi1(2) =1, |agzBy_o(2) [, = axz |, <l ay [, <1.
From these relations together with the recurrent relations (11) and the princi-
ple of isosceles triangle we obtain

| Ak(Z) |p: max{| Ak—l(z) |p)| akZAk—Z(Z) |p} =1 >
| Bi(z)l,=max{| By (z)|,.| ayzBy_»(z) |, } =1,
what means that the equalities (12) hold for n = k. Therefore, the step of

induction is obtained. Lemma is proved.

5. The convergence of sequence of approximants

Let us establish conditions of convergence of the sequence { I (Z)}ZO:O’
defined by formula (9).

Lemma 3. Let a,b,c€Q,,, |a|,#c|,, |D|,# c|,, min{[a|,[b],}>1,

|c|,>max{|al,,|b|,}. If ze D(1) then forall neN
u(2)= fua(2), Faly ol |, 2], (13)

Proof. We shall use the method of mathematical induction on 7. For
n =1 we have
A(z) A,(2) A (2)B,(z)— A4,(2)B,(2)
11y, =D A AR @5
B(2) B,(2|, | BB |
Let us assume that formula (13) is true for n =k, £k >1. Now we will
prove that it is true for n=k+1. In fact, on the basis of Lemma 2,

|Bn(z)|p =1 for all ne N, so that

:| alz |p'

B 4. 40|
|fk+1(2) fk(Z)|p_‘Bk+1(Z) Bk(Z)‘P_

_|Ak+1(Z)Bk(Z)_Ak(Z)Bk+1(Z)| B B
= B, (2)B,(2) ‘ —|Ak+1(Z)Bk(Z) Ak(Z)Bk+1(Z)|p-

p
By applying to the functions 4, ,(z), B,,;(z) the recurrent relations

(11) in complience with the induction assumptions and according to Lemmas
1, 2, we obtain that

|fk+l(Z)_fk(Z) |17:|Ak(Z)Bk(Z)+ak+IZAk_1(Z)Bk(Z)—
_Ak(Z)Bk(Z)—ak+lZAk(Z)Bk_1(Z)|p =

=|a12( Ai(2)Be(2) = Ap(2)Bi(2))], =
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k+1
:| Ap+12 ‘p|fk(z)_fk—l(z) |p:| q |p """ak+1 |p '|Z|p+

Lemma is proved.
Proof of Theorem 1. Based on the assumptions of the Theorem and of
Lemmas 1, 3 it follows that for any n,m e N, m >n, and z € D(1) the next

estimates are true:

| fu(2) = fu(2)] Sn+rf1£'c}?;mIfj(Z)—fj_l(Z)L7<(maX{|alp,lblp}/ICIP)”-

From inequality |c|,>max{|al,,[b|,} the fundamentality of sequence (9)
in Q,, follows and so its convergence in Q,, follows too.

6. Convergence of the sequence of approximants to the ratio of hy-
pergeometric functions
The Theorem 1 bring us to the fact that in the circle D(1) there exists

a function f - D(1) —> Q,,, which is the point limit of the sequence (9):
f(z)=1lm f,(z), ze D(1).
n—o0

From Lemma 2 it follows that the image of the map f(z) in fact is a subset
of unit circle {z€Q,, :[z[,=1}.

Let us establish the requirements for the parameters a,b,c€Q, for
which the function f(z) equals the ratio (3).

Lemma 4. Let abceQ, and min{|al,|b|,}>1, |c|,>ab],. If
ze D(pl/(l_p)), then |F(a,b;c;z)|p =1 forall z € D(pl/(l_p)).

Proof. It is known [4] that

t/nf <p"PV, neN. (14)

From the conditions of Lemma and the formulas (10), (14) we see that for all
n>1and ze D(p'?))

@, 0), =
€,

From the inequality |c|,>[ab |, together with the estimates (15) the conver-

ab|’ ab|!
<Qpn/(p—1)|z|l';§@ (15)

el el

gence of series (4) follows, so from the principle of isosceles triangle it fol-
lows that

@), ="
@,

|F(a,b;c;z)|p = max- 1,sup

n>1

Lemma is proved.
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LemmaSS. Let a,b,c€Q,,, |a|,#c|,, |b|,# |, min{[a|,[b],}>1,
1/(1-
|c|y>max{|al,| b, abl, }. If z e D(p" ")) then
F(abc;z) |
F(a,b+1;c+1;z)|p

Proof. Let us prove that for all » € N the following formula is true
F(a,b,‘c;z) — an+IZAn—1(Z)+ Wn+1(Z)An(Z)
F(a,b+1l;c+1;z) an+lan_1(z)+WHH(Z)B,Z(Z)’

Su(2) =

:|al|p""'|an+l|p'|z|;>neN- (16)

(17)

where w, (z), ne N, are defined by the equation (8). Let us use the method
of mathematical induction on n. For n =1 we have
F(ab;c;z) I
F(a,b+1l;c+1;z) w(z)
Let us assume that the formula (17) it true for n <k . Now we shall prove
that it holds for n = k. From the induction assumptions we obtain

Flabic;z) _ apzdy o(z)+wi(2)4;4(2)
F(a,b+1;c+1;z) apzBy_5(z)+wi(z)By_i(z)

Since wy(z)=1+ k12 (see formula (7)), then
Wr+1( 2

azd, o(z)+ (1 + W]Ak_l(z )

F(ab;c;z) Wi (z

Flab+letlz)

akZBk_z(Z) + (1 + W]Bk_l(Z)
Wiy1(2

_ A1Z4k-1(2) + Wi (2) A (2) '
U12By1(2) + Wi 1(2)Bi(z)
Therefore from the formula (17) it follows that

Su(2)= F(Z;aji' if 1),-2 )Ip B

@74y 5(2)+ Ayi(2)  @u2dy 5(2)+Wa(2) Ay i(2)|

a,2By 2(2)+ B, 1(2)  ayzB, 5(2)+w,(2)B,4(2)|,

~ |fn—l(z)_fn—2(z)|p|anz|p|l_Wn(z)|p
a42B,2(2)+ B, 1(2)] Jau2B,a(2) 4+ w(2)B,a (2],

Since from Lemma 4 and formula (8) it follows that |w,(z)[,=1 for all

n € N, then from Lemmas 2, 3 and formula (7) we obtain (16).
Lemma is proved.
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Proof of Theorem 2. Since from the assumptions of the Theorem 2
and of Lemmas 1, 5 it follows that for any ne N and z € D( pl/ (1=p) ) itis
true that

F(ab;c;z) |
F(a,b+1;c+1;z)|p

<(max{|al,|bl|,}/|c|,)"".

fn(z)_

From this inequality and inequality |c|,>max{[a|,, b],} it follows that

the sequence of functions (9) converges to the ratio (3) in Q.
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